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StaRAI Tractability Consistency

Modeling Relational Domains in First Order Logic

Social Networks

Freinds(x, y)
Smokes(x)
Cancer(x)
...

Molecules

Bond(x, y)
Carbon(x)
Oxygen(x)
...

Business Processes

Teaches(x, y)
Professor(x)
Student(x)
...
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Modeling Knowledge in First Order Logic

Social Networks

∀xy.Fr(x,y)→Fr(y,x)

∀xy.Sm(x)∧Fr(x,y)→Sm(y)

...

Molecules

∀x.H(x)→∃y.Bond(x,y)

∀x.O(x)→∃≤2y.Bond(x,y)

...

Business Processes

∀xy.Prof(x)∧Tch(x,y)→Stud(y)

...
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StaRAI Tractability Consistency

Modelling Relational Domains in First Order Logic

PROBLEMS!1

• Laziness: Too much work to list out all rules!

• Theoretical Ignorance: We don’t have all the rules!
• Practical Ignorance: Maybe there are no rules — inherent
stochasticity!

1Russell and Norvig. Artificial Intelligence: A Modern Approach
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StaRAI Tractability Consistency

Statistical Relational AI

Statistical Relational AI
=

Logic + Probability

7



StaRAI Tractability Consistency

Ingredients of Statistical Relational Learning

SRL ingredients:

• A set of Herbrand models Ω(n) in function-free First Order Logic
• A parametric probability distribution Pθ : Ω → [0, 1]

The Inference Problem:

• Pθ(q) =
∑

ω|=q Pθ(ω)

The Learning Problem:

• θ∗ = argmaxθ Pθ(ω
∗)

8
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StaRAI Tractability Consistency

Fundamental Problems in SRL

“What are the fundamental problems in Statistical Relational
Learning?”

The Inference Problem:

• Pθ(q) =
∑

ω|=q Pθ(ω) Intractability

The Learning Problem:

• θ∗ = argmaxθ Pθ(ω
∗) No Consistent Estimation
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Markov Logic2: An Example

A contact-tracing model:

w1 : Covid(x)
w2 : Covid(x) ∧ Contact(x,y) → Covid(y)

2Richardson and Domingos. Markov Logic Networks. 2006
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StaRAI Tractability Consistency

MLNs: An Example

v0 v1

v2 v3

• Covid(x)
n1(ω) = |{vi : ω |= Covid(vi)}|
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StaRAI Tractability Consistency

MLNs — An Example

v0 v1

v2 v3

• Covid(x) ∧ Contact(x,y) → Covid(y)
n2(ω) = |{(vi, vj) : ω |= φ2(vi,vj)}|
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StaRAI Tractability Consistency

Markov Logic Networks: Almost Formally

• Weighted quantifier-free first-order logic formulas:

{wi : φi}

• Probability distribution on all finite structures of size n:

Pr(ω) := 1
Z

exp

(∑
i

wini(ω)

)
(1)

• The partition function — main source of intractability:

Z :=
∑

ω|=Φ∞

exp

(∑
i

wini(ω)

)
(2)
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StaRAI Tractability Consistency

Weighted First Order Model Counting

Symmetric Weighted First Order Model Counting (WFOMC):

wfomc(Φ,n) :=
∑
ω|=Φ

w(ω)

w(ω) =
∏
ω|=g
g∈G

w(pred(g))
∏

ω|=¬g
g∈G

w̄(pred(g)).

WFOMC is Tractable if it can be computed in polynomial time w.r.t the
domain size (n).
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StaRAI Tractability Consistency

WFOMC: An Example

∀x.KR(x) → Intelligent(x)

w(KR) = 2.5 w̄(KR) = 0.5
w(Intelligent) = 0.5 w̄(Intelligent) = 1.5

KR(a) Intelligent(a) w(ω)

1 1 2.5 × 0.5 = 1.25
1 0 2.5 × 1.5 = 1.25
0 1 5 × 0.5 = 1.5
0 0 5 × 1.5 = 7.5

wfomc(Φ, 1) = 1.25 + 1.5 + 7.5

15
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WFOMC ≡ Partition Function

Z :=
∑

ω|=Φ∞

exp

(∑
i

wini(ω)

)

Φ∞ ∧
∧

i
∀FV [φi].

(
Ri(FV [φi]) ↔ φi

)
(3)

w(Ri) = exp(wi) w̄(Ri) = 1
w(∗) = 1 w̄(∗) = 1

16
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WFOMC ≡ Partition Function: An Example

w : KR(x) → Intelligent(x)

WFOMC encoding for the partition function:

∀x.R(x) ↔
(
KR(x) → Intelligent(x)

)
w(R) = exp(w) w(∗) = 1 w̄(∗) = 1
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StaRAI Tractability Consistency

How Intractable (practically)?

WFOMC is a #P complete problem in general3.

But is WMC not practically quite scalable?

3Beame, Van den Broeck, Gribkoff, Suciu. PODS 2015.

18



StaRAI Tractability Consistency

How Intractable (practically)?

WFOMC is a #P complete problem in general3.

But is WMC not practically quite scalable?

3Beame, Van den Broeck, Gribkoff, Suciu. PODS 2015.

18



StaRAI Tractability Consistency

How Intractable?

w1 : Stress(x) → Smokes(x)
w2 : Smokes(x) ∧ Fr(x,y) → Smokes(y)
w3 : Fr(x,y) ∧ Fr(y,z) → Fr(x,z)

19
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How Intractable4?

Figure 1: 10000 seconds is more than 2 hours

4Bremen and Kuzelka. IJCAI 2020

20
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WFOMC: Fundamental Problems

What fragments of first-order logic admit tractable WFOMC?

There is an intractable FO3 formula5

FO2 is tractable6

5Beame, Van den Broeck, Gribkoff and Suciu. PODS 2015.
6den Broeck et al. KR 2014
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StaRAI Tractability Consistency

FO2 Language: 1-Types

We have a language with at most two variables , with the following
predicates:

• A unary predicate KR(x)
• A binary predicate Shaves(x,y)

We have the following set of unary properties also called 1-types:

¬KR(c) ∧ ¬Shaves(c,c)

¬KR(c) ∧ Shaves(c,c)

KR(c) ∧ ¬Shaves(c,c)

KR(c) ∧ Shaves(c,c)

22
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StaRAI Tractability Consistency

1- Type Enumeration

An arrangement of 1-Types

¬KR(c) ∧ ¬Shaves(c,c) ¬KR(c) ∧ Shaves(c,c)

c1

c2c3

c4 c5

c6

k : k1 = 1 k2 = 2 k3 = 1 k4 = 2

KR(c) ∧ ¬Shaves(c,c) KR(c) ∧ Shaves(c,c) 23
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1- Type Enumeration

Another arrangement of 1-Types

¬KR(c) ∧ ¬Shaves(c,c) ¬KR(c) ∧ Shaves(c,c)

c1

c2c3

c4 c5

c6

k : k1 = 1 k2 = 2 k3 = 1 k4 = 2

KR(c) ∧ ¬Shaves(c,c) KR(c) ∧ Shaves(c,c) 24



StaRAI Tractability Consistency

1-Type Enumeration

Counting for fixed 1-Type cardinalities

c1

c2c3

c4 c5

c6

k : k1 = 1 k2 = 2 k3 = 1 k4 = 2

#Similar Arrangements =
(

n
k1, k2, k3, k4

)
=

6!
1!2!1!2!

= 180
25



StaRAI Tractability Consistency

FO2 Language: 2-tables

We have an FO2 language, with the following predicates:

• A unary predicate KR(x)
• A binary predicate Shaves(x,y)

We have the following set of binary properties also called 2-tables:

Shaves(c,d) ∧ Shaves(d,c)

¬Shaves(c,d) ∧ Shaves(d,c)

Shaves(c,d) ∧ ¬Shaves(d,c)

¬Shaves(c,d) ∧ ¬Shaves(d,c)

26
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2- Table Enumeration

An arrangement for 2-tables

Shaves(c,d) ∧ Shaves(d,c) ¬Shaves(c,d) ∧ Shaves(d,c)

c1

c2c3

c4 c5

c6

Shaves(c,d) ∧ ¬Shaves(d,c) ¬Shaves(c,d) ∧ ¬Shaves(d,c)

27



StaRAI Tractability Consistency

2- Table Enumeration given 1-Types

An arrangement for 2-tables given 1-types

c1

c2c3

c4 c5

c6

28



StaRAI Tractability Consistency

2- Table Enumeration given 1-Types

Pick a pair of 1-Types

c1

c2c3

c4 c5

c6

29
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2- Table Enumeration given 1-Types

Picking a sub graph: Pick 2-Tables between them

c1

c2c3

c4 c5

c6

30
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2- Table Enumeration

Enumerating 2-tables given 1-types

c1

c3

c5

c6

k2 = 2 k4 = 2

h1 = 2 h2 = 1 h3 = 1 h4 = 0

(
k2 × k4

h1 h2 h3 h4

)
=

(2 × 2)!
2!2!1!0!

= 6
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2- Table Enumeration

Enumerating 2-tables given 1-types

c1

c3

c5

c6

k2 = 2 k4 = 2

h1 = 2 h2 = 1 h3 = 1 h4 = 0(
k2 × k4

h1 h2 h3 h4

)
=

(2 × 2)!
2!2!1!0!

= 6
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Enumerating all models over 1-types and 2-tables

∑
〈~k,~h〉

(
n

k1...ku

) ∏
1≤i≤j≤u

( k(i, j)
hij

1 ...h
ij
b

)

k(i, j) =
{

kikj if i 6= j
ki(ki−1)

2 if i = j

32
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Adding Formulas : ∀xy.Φ(x, y)

A formula ∀xy.Φ(x, y), allows some and disallows other 1-Type and
2-Table configuration. For Example:

¬Shaves(x,x)
Shaves(x,y) → Shaves(y,x)
KR(x) ∧ Shaves(x,y) → KR(y)

33
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Adding Formulas : ∀xy.Φ(x, y)

¬Shaves(x,x)
Shaves(x,y) → Shaves(y,x)
KR(x) ∧ Shaves(x,y) → KR(y)

Not allowed:

¬KR(c) ∧ ¬Sh(c,c) ∧ KR(d) ∧ ¬Sh(d,d)∧Sh(c,d) ∧ Sh(d,c)

c d

Allowed:

KR(c) ∧ ¬Sh(c,c) ∧ KR(d) ∧ ¬Sh(d,d)∧Sh(c,d) ∧ Sh(d,c)

c d 34
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FOMC in FO2: ∀x∀y.Φ(x, y)

FOMC(Φ,n) =

∑
〈~k,~h〉

(
n

k1, ..., ku

) ∏
1≤i≤j≤u

( k(i, j)
hij

1 , ..., h
ij
b

) ∏
1≤v≤b

nijv
hij

v

Unary Properties Constraints: Φ Binary Properties

35
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FOMC in FO2: ∀x∀y.Φ(x, y)

FOMC(Φ,n) =

∑
〈~k,~h〉

(
n

k1, ..., ku

) ∏
1≤i≤j≤u

( k(i, j)
hij

1 , ..., h
ij
b

) ∏
1≤v≤b

nijv
hij

v

=
∑
〈~k,~h〉

fomc(Φ, 〈~k, ~h〉)

=
∑
~k

fomc(Φ, ~k)

36
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Cardinality Constraints

¬Shaves(x,x)
Shaves(x,y) → Shaves(y,x)
KR(x) ∧ Shaves(x,y) → KR(y)
|KR(x)| = 2

k1 : ¬KR(c) ∧ ¬Shaves(c,c)
k2 : ¬KR(c) ∧ Shaves(c,c)
k3 : KR(c) ∧ ¬Shaves(c,c)
k4 : KR(c) ∧ Shaves(c,c)

k : k3 + k4 = 2

37



StaRAI Tractability Consistency

Cardinality Constraints

¬Shaves(x,x)
Shaves(x,y) → Shaves(y,x)
KR(x) ∧ Shaves(x,y) → KR(y)
|KR(x)| = 2

k1 : ¬KR(c) ∧ ¬Shaves(c,c)
k2 : ¬KR(c) ∧ Shaves(c,c)
k3 : KR(c) ∧ ¬Shaves(c,c)
k4 : KR(c) ∧ Shaves(c,c)

k : k3 + k4 = 2

37



StaRAI Tractability Consistency

Cardinality Constraints

¬Shaves(x,x)
Shaves(x,y) → Shaves(y,x)
KR(x) ∧ Shaves(x,y) → KR(y)
|KR(x)| = 2

k1 : ¬KR(c) ∧ ¬Shaves(c,c)
k2 : ¬KR(c) ∧ Shaves(c,c)
k3 : KR(c) ∧ ¬Shaves(c,c)
k4 : KR(c) ∧ Shaves(c,c)

k : k3 + k4 = 2
37



StaRAI Tractability Consistency

Cardinality Constraints

Given an arbitrary cardinality constraint ρ:

fomc(Φ ∧ ρ) :=
∑

〈k,h〉|=ρ

fomc(Φ, 〈k,h〉)

38
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Existential Quantifiers 7

Minimal Non-Trivial Example:

Ψ := Φ ∧ ∀x∃y.R(x,y)

Key Proof ideas:

• Ac = {ω|ω |= Φ ∧ ∀y.¬R(c, y)} ≡ Atleast c is isolated
• fomc(Φ) - |

⋃
i∈[n] Ai|

• Use Principle of Inclusion Exclusion to calculate |
⋃

i∈[n] Ai|

7Guy Van den Broeck, Wannes Meert, Adnan Darwiche. KR 2014
Malhotra and Serrafini. AAAI 2022 (for this formulation)
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Principle of Inclusion-Exclusion

•
∣∣⋃n

i=1 Ai
∣∣ =∑∅6=J⊆{1,...,n}(−1)|J|+1

∣∣∣⋂j∈J Aj

∣∣∣

• The number of terms involved is 2n − 1
• Recall,Ac = {ω|ω |= Φ ∧ ∀y.¬R(c, y)}
•
⋂

j∈J Aj is dependent on |J | and not on {J}
• Let αK =

∣∣⋂
j∈J Aj

∣∣
• αk = |{ω|ω |= Φ ∧ ∀xy.P(x) → ¬R(x, y) ∧ |P| = k}|

40
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Principle of Inclusion-Exclusion

Recall,

αk = |{ω|ω |= Φ ∧ ∀xy.P(x) → ¬R(x, y) ∧ |P| = k}|

We wanted:

fomc(Φ)− |
⋃

i∈[n]

Ai|

∣∣∣∣∣
n⋃

i=1
Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k+1
(

n
k

)
αk∣∣∣∣∣U\

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

k=0

(−1)k+1
(

n
k

)
αk
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Existential Quantifier ≡PIE ≡WFOMC with negative weights

wfomc(Φ ∧ ∀x∃y.R(x,y)) ≡ wfomc(Φ ∧ ∀xy.P(x) → ¬R(x,y))

Scott’s Normal Form is equi-satisfiable and WFOMC preserving:

Φ
∧

i
∀x∃yRi(x, y)
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Counting Quantifiers 8

Counting Quantifiers: ∀x∃=1y.R(x,y)

8Kuzelka. JAIR 2021. Functionality: Kuuisto, Lutz. LICS 2018
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Counting Quantifiers: Expressing Functionality

R(x, y) : ∆ → ∆

∆ ∆ 44
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Counting Quantifiers9

Let Φ be the following C2 formula, then it can be written as:

Φ0 ∧
q∧

k=1

∀x.(Ak(x) ↔ ∃=mk y.Rk(x, y))

where Φ0 is a pure universal formula in FO2.

9Kuzelka. JAIR 2021, Malhotra and Serafini. AAAI 2022 for this formulation
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WFOMC beyond first-order logic 10

21 3 4

10Malhotra, Bizzaro and Serafini. 2024 (Under Review at Artificial Intelligence Journal)
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Projections on sub-domain

Then, ω′ = ω ↓ [2] and ω′′ = ω ↓ [2̄] are given respectively as

21 3 4and
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In how many ways can I merge them?

Then, ω′ = ω ↓ [2] and ω′′ = ω ↓ [2̄] are given respectively as

21 3

What is the number of ways to merge these partial interpretations?

24
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In how many ways can I merge under constraints?

Then, ω′ = ω ↓ [2] and ω′′ = ω ↓ [2̄] are given respectively as

21 3

What is the number of ways to merge these partial interpretations?
Such that there are only directed edges from [2] to [2̄]?

22

This can be captured by restricting the allowed 2-types between ∆

and ∆′
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Counting by splitting

How can you compute WFOMC of all the models on [m] and [m̄], such
that:

C1: ω ↓ [m] |= axiom′

C2: ω ↓ [m̄] |= axiom′′

C3: ω |= ∀x ∈ [m] ∀y ∈ [m̄].Θ(x, y)
C4: ω |= ∀xy.Φ(x, y)

• w(ω′)w(ω′′)
∏

i,j∈[u] rk′
i k′′

j
ij , where rij captures the constrains

across them.
•

wfomc(Ψ[m], k) =
∑

k′+k′′=k
|k′|=m

wfomc(Ψ′, k′)wfomc(Ψ′′, k′′)
∏

i,j∈[u]

rk′
i k′′

j
ij
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What can I do with this result?

axiom′ axiom′′ Θ(x, y)
DAG(R) ∀xy.¬R(x, y) DAG(R) ¬R(y, x)

Connected(R) Connected(R) > ¬R(x, y)
Forest(R) Tree(R) Forest(R) ¬R(x, y)

Table 1: A summary of results using counting by splitting
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Open Problems

• Is there a some formal language that completely captures
tractable WFOMC?

• Is there an FPRAS? (There is no PTAS (Jaeger 2014. TPLP))
• Evidence. Something is known about FPT (Broeck and Darwiche
2013. NeurIps). But not alot.

• Sampling – Amazing recent developments (Wang et al. LICS 2023)
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StaRAI Tractability Consistency

A Covid Outbreak in Pullman Hotel!
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Back to my grim Example

A contact-tracing model:

w1 : Covid(x)
w2 : Covid(x) ∧ Contact(x,y) → Covid(y)

â = argmax
a

P(m)
Φ (ω) (4)
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A Covid Outbreak in Pullman Hotel!
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What do we observe, and what do we learn?

How does one usually do parameter estimation?

â = argmax
a

P(m)
Φ (ω) (5)

What do we actually want to do?

â = argmax
a

P(n+m)
Φ ↓ [n](ω)

where,
P(n) ↓ [m](ω′) =

∑
ω∈Ω(n):ω↓[m]=ω′

P(n)(ω)
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Consistency of Learning and Inference

Consistency of Inference [Projectivity]11: A model learnt over a
domain of size n, basically says nothing quantitative about a domain
of size n + 1

P(m)
θ (q) 6= P(n)

θ ↓ [m](q)

Consistency of Learning: Batching or stochastic gradient descent
cannot work for MLNs ! as they donnot admit consistent parameter
estimates

argmax
θ

Eω′ [logP(m)
θ (ω′)] 6= argmax

θ
logP(n)

θ (ω)

11Shalizi and Rinaldo. 2013. Jaeger and Shulte. StarAI Workshop 2018. Mittal, Bhardwaj,
Gogate, Singla. AISTATS 2019.
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Trying to get near Projectivity!

Can we improve the learning procedure to get near-projective
models 12

− logP(n+m)
Φ ↓ [n](ω) ≤ − logP(n)

Φ (ω) + log∆ (6)

KL(P(n+m)
Φ ↓ [n]||P(n)

Φ ) ≤ log∆ (7)

12Chen, Weitkamper, Malhotra. ECML 2024.
(For theory of RMP) Kuzelka, Wang, Davis and Schockaert. AAAI 2018.
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But what are Projective Models?

Erdős–Rényi random graph:

Pr(G(n + m, p) = G) = p|E|(1 − p)(
n+m

2 )−|E|

Pr(G(n + m, p) ↓ [n] = G′) = p|E′|(1 − p)(
n
2)−|E′| (8)

= Pr(G(n, p) = G′). (9)
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Can we express any projective models in MLNs?

“A Markov Logic Network in the Two Variable Fragment is projective if
and only if it represents a stochastic block structure 13”

13Malhotra and Serafini. ECML 2022
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probability parameters

• pi is the probability of an arbitrary domain constant realising
the ith 1-type

pi := P
(
i(x)

)

• wijl is the conditional probability of an arbitrary pair of domain
constants to realise the lth 2-table, given they realise the ith and
the jth 1-type.

wijl = P
(
l(x, y)|i(x) ∧ j(y)

)
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“Who Shaves Who in KR?”

Assuming Shaves to be irreflexive and symmetric, we have the
following non-zero {pi,wijl}

p1 = P(KR(a))
p2 = P(¬KR(a))

w111 = P(Shaves(a,b)|KR(a),KR(b))
w112 = P(¬Shaves(a,b)|KR(a),KR(b))
w121 = P(Shaves(a,b)|KR(a),¬KR(b))
w122 = P(¬Shaves(a,b)|KR(a),¬KR(b))
w221 = P(Shaves(a,b)|¬KR(a),¬KR(b))
w222 = P(¬Shaves(a,b)|¬KR(a),¬KR(b))
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The Relational Block Model

Relational Block Model :

P(X = x) :=
n∏

q=1
pxq =

u∏
i=1

pki
xi

P(Y = y|X = x) :=
∏

1≤q<r≤n

wxqxr yqr

=
∏

1≤i≤j≤u

∏
1≤l≤b

(wijl)
hij

l

Any projective MLN in the two variable fragment reduces to an RBM

Malhotra and Serafini. ECML PKDD 2022
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What is the most general class of projective models on
graphs?

A graphon14 is a symmetric, measurable function
W : [0, 1]× [0, 1] → [0, 1] such that:

• W (x, y) = W (y, x) for all x, y ∈ [0, 1] (symmetry),
• W (x, y) gives the probability of an edge between points x and y.

Sampling a graph from a graphon:

1. Sample n points u1, u2, . . . , un uniformly from [0, 1].
2. For each pair (i, j) with i 6= j , place an edge with probability

W (ui, uj).

14László Lovász and Aldous-Hoover-Kallenberg
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What do all these models have in common?

• Exchangeable Distributions:

P((Xij)) = P((Xσ(i)σ(j)))

• Xij are edges for a ER graph or a graphon
• Xij are 2-types for FO2

• Can be generalized to exchangeable random arrays like Xijl

68
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Aldous-Hoover-Kallenberg

Theorem 1 (Aldous-Hoover representation of jointly exchangeable
matrices (Aldous, 1981; Hoover, 1979)). A random 2-array (Xij)i,j∈N is
jointly exchangeable if there exists a function
f : [0, 1]× [0, 1]2 × [0, 1] → E such that

(Xij)= (f (U,Ui,Uj,Uij)) ,

where (Ui)i∈N and (Uij)i,j>i∈N with Uij = Uji are a sequence and
matrix, respectively, of i.i.d. Uniform[0, 1] random variables.

Jaeger and Schulte. IJCAI 2020. For extension to Relational data.

69



StaRAI Tractability Consistency

Open Problems

• How to represent and learn expressive AHK models?

• How to encode expert Knowledge into AHK models?
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Thank You!
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