

Weighted Model Counting in First Order Logic

Doc in Progress @ Department of Mathematics, UNITN

Sagar Malhotra^{1,2} and Luciano Serafini ¹

¹Fondazione Bruno Kessler ²University of Trento

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
●0000		000000000	000
Model Countin	g		

Given a logical formula Φ . e.g.

 $\mathsf{Trentino} \to \mathsf{Climber}$

MC ?

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
•0000		00000000	000
Model Counting	g		

Given a logical formula $\Phi.\,$ e.g.

 $\mathsf{Trentino} \to \mathsf{Climber}$

MC?

Trentino	Climber	$Trentino \to Climber$
1	1	1
1	0	0
0	1	1
0	0	1

MC = 3

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		000000000	000
Weighted	Model Counting		

Given a logical formula $\Phi.\,$ e.g.

 $\mathsf{Trentino} \to \mathsf{Climber}$

And a weight function e.g.

w(Trentino) = 2.5 $w(\neg\text{Trentino}) = 5$ w(Climber) = 0.5 $w(\neg\text{Climber}) = 1.5$

WMC?

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
0●000		000000000	000
Weighted	Model Counting		

Given a logical formula $\Phi.\,$ e.g.

 $\mathsf{Trentino} \to \mathsf{Climber}$

And a weight function e.g.

 $w({\sf Trentino}) = 2.5 \qquad w(\neg {\sf Trentino}) = 5$ $w({\sf Climber}) = 0.5 \qquad w(\neg {\sf Climber}) = 1.5$

WMC?

Trentino	Climber	$Trentino \to Climber$
1	1	$2.5 \times 0.5 = 1.25$
1	0	$2.5 \times 1.5 = 1.25$
0	1	$5 \times 0.5 = 1.5$
0	0	$5 \times 1.5 = 7.5$

WMC = 11.25

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		000000000	000
WMC Applicati	ions		

Weighted Model Counting: Approaches

Devising heuristic/approximation algorithms
 WMC is intractable !

Weighted Model Counting: Approaches

- Devising heuristic/approximation algorithms
 WMC is intractable !
- Identifying logical languages that admit efficient WMC Today's presentation

Weighted First Order Model Counting

 $\forall x. \mathsf{Trentino}(x) \rightarrow \mathsf{Climber}(x)$

A weight function associated to predicates:

w(Trentino) = 2.5 $w(\neg \text{Trentino}) = 5$ w(Climber) = 0.5 $w(\neg \text{Climber}) = 1.5$

What is the WFOMC for n people ?

Weighted First Order Model Counting

 $\forall x. \mathsf{Trentino}(x) \rightarrow \mathsf{Climber}(x)$

A weight function associated to predicates:

w(Trentino) = 2.5 $w(\neg \text{Trentino}) = 5$ w(Climber) = 0.5 $w(\neg \text{Climber}) = 1.5$

What is the WFOMC for n people ?

Can we compute it in PTIME?

Weighted First Order Model Counting

 $\forall x. \mathsf{Trentino}(x) \rightarrow \mathsf{Climber}(x)$

A weight function associated to predicates:

w(Trentino) = 2.5 $w(\neg \text{Trentino}) = 5$ w(Climber) = 0.5 $w(\neg \text{Climber}) = 1.5$

What is the WFOMC for n people ?

Can we compute it in PTIME?

Can we get a closed form formula ?

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		000000000	000
FO ² Language:	1-Types		

We have a language with **at most two variables** , with the following predicates:

- A unary predicate FBK(x)
- A binary predicate Shaves(x, y)

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000	○●○○○○○○○○○○○○	000000000	000

FO² Language: 1-Types

We have a language with **at most two variables** , with the following predicates:

- A unary predicate FBK(x)
- A binary predicate Shaves(x, y)

We have the following set of unary properties also called 1-types:

 $\neg FBK(c) \land \neg Shaves(c, c)$ $\neg FBK(c) \land Shaves(c, c)$ $FBK(c) \land \neg Shaves(c, c)$ $FBK(c) \land Shaves(c, c)$

$$k: k_1 = 1 \quad k_2 = 2 \quad k_3 = 1 \quad k_4 = 2$$

 $FBK(c) \land \neg Shaves(c, c)$

 $FBK(c) \land Shaves(c, c)$

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		000000000	000
1- Type Enume	eration		

Another arrangement of 1-Types

```
\neg FBK(c) \land \neg Shaves(c,c)
```

 $\neg FBK(c) \land Shaves(c, c)$

 $FBK(c) \land \neg Shaves(c, c)$

 $FBK(c) \land Shaves(c, c)$

FOMC in the two variable fragment	
0000000000000	

1-Type Enumeration

Counting for fixed 1-Type cardinalities

#Similar Arrangements =
$$\binom{n}{k_1, k_2, k_3, k_4} = \frac{6!}{1!2!1!2!} = 180$$

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		000000000	000
FO ² Language:	2-tables		

We have an FO^2 language, with the following predicates:

- A unary predicate FBK(x)
- A binary predicate Shaves(x, y)

We have the following set binary properties also called 2-tables:

$$\begin{split} & \text{Shaves}(c,d) \land \text{Shaves}(d,c) \\ \neg & \text{Shaves}(c,d) \land \text{Shaves}(d,c) \\ & \text{Shaves}(c,d) \land \neg & \text{Shaves}(d,c) \\ \neg & \text{Shaves}(c,d) \land \neg & \text{Shaves}(d,c) \end{split}$$

	FOMC in the two variable fragment		
00000	0000000000000	00000000	000

2- Table Enumeration

An arrangement for 2-tables

 $Shaves(c,d) \land Shaves(d,c)$

 $\neg \texttt{Shaves}(\texttt{c},\texttt{d}) \land \texttt{Shaves}(\texttt{d},\texttt{c})$

 $\texttt{Shaves}(\texttt{c},\texttt{d}) \land \neg \texttt{Shaves}(\texttt{d},\texttt{c}) \qquad \neg \texttt{Shaves}(\texttt{c},\texttt{d}) \land \neg \texttt{Shaves}(\texttt{d},\texttt{c})$

Extensions Control Con

2- Table Enumeration given 1-Types

An arrangement for 2-tables given 1-types

Extensions Co

2- Table Enumeration given 1-Types

Picking a sub graph: Pick a pair of 1-Types

2- Table Enumeration given 1-Types

Picking a sub graph: Pick 2-Tables between them

FOMC in the two variable fragment	
00000000000000	

2- Table Enumeration

Enumerating 2-tables given 1-types

FOMC in the two variable fragment	
00000000000000	

2- Table Enumeration

Enumerating 2-tables given 1-types

Conclusion 000

Enumerating all models over 1-types and 2-tables

$$\sum_{\vec{k},\vec{h}} \binom{n}{k_1 \dots k_u} \prod_{1 \le i \le j \le u} \binom{k(i,j)}{h_1^{ij} \dots h_b^{ij}}$$
$$k(i,j) = \begin{cases} k_i k_j & \text{if } i \ne j \\ \frac{k_i (k_i-1)}{2} & \text{if } i = j \end{cases}$$

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		000000000	000

Adding Formulas : $\forall xy.\Phi(x,y)$

A formula $\forall xy. \Phi(x, y)$, allows some and disallows other 1-Type and 2-Table configuration. For Example:

$$\label{eq:shaves} \begin{split} &\neg Shaves(x,x) \\ &Shaves(x,y) \rightarrow Shaves(y,x) \\ &FBK(x) \wedge Shaves(x,y) \rightarrow FBK(y) \end{split}$$

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000	000000000000000000000000000000000000	00000000	000

Adding Formulas : $\forall xy.\Phi(x,y)$

$$\label{eq:shaves} \begin{split} \neg Shaves(\textbf{x},\textbf{x}) \\ Shaves(\textbf{x},\textbf{y}) & \rightarrow Shaves(\textbf{y},\textbf{x}) \\ FBK(\textbf{x}) \land Shaves(\textbf{x},\textbf{y}) & \rightarrow FBK(\textbf{y}) \end{split}$$

Not allowed:

 $\neg FBK(c) \land \neg Sh(c,c) \land FBK(d) \land \neg Sh(d,d) \land Sh(c,d) \land Sh(d,c)$

Allowed:

 $\texttt{FBK}(\texttt{c}) \land \lnot\texttt{Sh}(\texttt{c},\texttt{c}) \land \texttt{FBK}(\texttt{d}) \land \lnot\texttt{Sh}(\texttt{d},\texttt{d}) \land \texttt{Sh}(\texttt{c},\texttt{d}) \land \texttt{Sh}(\texttt{d},\texttt{c})$

Introduction 00000 FOMC in the two variable fragment

Extensions 000000000

FOMC in FO²: $\forall x \forall y \cdot \Phi(x, y)$

 $FOMC(\Phi, n) =$

$$\sum_{oldsymbol{k},oldsymbol{h}} inom{n}{k_1,...,k_u} \prod_{1 \leq i \leq j \leq u} inom{k(i,j)}{h_1^{ij},...,h_b^{ij}} \prod_{1 \leq v \leq b} n_{ijv}{}^{h_v^{ij}}$$

Unary Properties

Constraints: Φ

Binary Properties

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		0●0000000	000

Cardinality Constraints

$$\label{eq:shaves} \begin{split} &\neg Shaves(x,x) \\ &Shaves(x,y) \rightarrow Shaves(y,x) \\ &FBK(x) \wedge Shaves(x,y) \rightarrow FBK(y) \\ &|FBK(x)| = 2 \end{split}$$

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		○●○○○○○○○	000

Cardinality Constraints

$$\label{eq:shaves(x,x)} \begin{split} &\neg Shaves(x,x) \\ &Shaves(x,y) \rightarrow Shaves(y,x) \\ &FBK(x) \wedge Shaves(x,y) \rightarrow FBK(y) \\ &|FBK(x)| = 2 \end{split}$$

 $\begin{array}{l} k_1: \neg \texttt{FBK}(\texttt{c}) \land \neg \texttt{Shaves}(\texttt{c},\texttt{c}) \\ k_2 : \neg \texttt{FBK}(\texttt{c}) \land \texttt{Shaves}(\texttt{c},\texttt{c}) \\ k_3: \quad \texttt{FBK}(\texttt{c}) \land \neg \texttt{Shaves}(\texttt{c},\texttt{c}) \\ k_4: \quad \texttt{FBK}(\texttt{c}) \land \texttt{Shaves}(\texttt{c},\texttt{c}) \end{array}$

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		00000000	000

Cardinality Constraints

$$\label{eq:shaves(x,x)} \begin{split} &\neg Shaves(x,x) \\ &Shaves(x,y) \rightarrow Shaves(y,x) \\ &FBK(x) \wedge Shaves(x,y) \rightarrow FBK(y) \\ &|FBK(x)| = 2 \end{split}$$

 $\begin{array}{l} k_1: \neg \texttt{FBK}(\texttt{c}) \land \neg \texttt{Shaves}(\texttt{c},\texttt{c}) \\ k_2 : \neg \texttt{FBK}(\texttt{c}) \land \texttt{Shaves}(\texttt{c},\texttt{c}) \\ k_3: \quad \texttt{FBK}(\texttt{c}) \land \neg \texttt{Shaves}(\texttt{c},\texttt{c}) \\ k_4: \quad \texttt{FBK}(\texttt{c}) \land \texttt{Shaves}(\texttt{c},\texttt{c}) \end{array}$

$$k: k_3 + k_4 = 2$$

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		00000000	000

Principle of Inclusion Exclusion

- Let Ω be a set of objects
- $\mathcal{S} = \{S_1, \dots, S_m\}$ be a set of properties of Ω
- e_0 : The count of objects with **NONE** of the properties in S
- Let $Q \subseteq S$, then N_Q is the count of objects with AT LEAST the properties in Q

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		00000000	000

Principle of Inclusion Exclusion

- Let Ω be a set of objects
- $\mathcal{S} = \{S_1, \dots, S_m\}$ be a set of properties of Ω
- e_0 : The count of objects with **NONE** of the properties in S
- Let $Q \subseteq S$, then N_Q is the count of objects with AT LEAST the properties in Q

We define,

$$s_l = \sum_{|\mathcal{Q}|=l} N_Q \tag{1}$$

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		00000000	000

Principle of Inclusion Exclusion

- Let Ω be a set of objects
- $\mathcal{S} = \{S_1, \dots, S_m\}$ be a set of properties of Ω
- e_0 : The count of objects with **NONE** of the properties in S
- Let $Q \subseteq S$, then N_Q is the count of objects with AT LEAST the properties in Q

We define,

$$s_l = \sum_{|\mathcal{Q}|=l} N_Q \tag{1}$$

Then the following relation holds:

$$e_0 = \sum_{l=0}^{m} (-1)^l s_l \tag{2}$$

Extensions 000●00000

FOMC Existential Quantifiers (Example)

 $\forall \mathtt{x} \mathtt{y}. \Phi(x,y) \land \forall \mathtt{x} \; \exists \mathtt{y}. \mathtt{Sh}(\mathtt{x}, \mathtt{y})$

Extensions 00000000

FOMC Existential Quantifiers (Example)

 $\forall \mathtt{x} \mathtt{y}. \Phi(x, y) \land \forall \mathtt{x} \; \exists \mathtt{y}. \mathtt{Sh}(\mathtt{x}, \mathtt{y})$

$$\Omega = \{ \omega : \omega \models \forall xy. \Phi(x, y) \}$$

 $\forall \mathtt{x} \mathtt{y}. \Phi(x,y) \land \forall \mathtt{x} \; \exists \mathtt{y}. \mathtt{Sh}(\mathtt{x}, \mathtt{y})$

$$\Omega = \{ \omega : \omega \models \forall xy. \Phi(x, y) \}$$

 $S_c = \{ \omega : \omega \models \forall xy. \Phi(x, y) \land \forall y. \neg Sh(c, y) \}$

 $\forall \mathtt{x} \mathtt{y}. \Phi(x,y) \land \forall \mathtt{x} \; \exists \mathtt{y}. \mathtt{Sh}(\mathtt{x}, \mathtt{y})$

$$\Omega = \{ \omega : \omega \models \forall xy. \Phi(x, y) \}$$

 $S_c = \{ \omega : \omega \models \forall xy. \Phi(x, y) \land \forall y. \neg Sh(c, y) \}$

 $e_0 = \text{FOMC}(\forall xy.\Phi(x,y) \land \forall x \exists y.Sh(x,y))$

 $\forall \mathtt{x} \mathtt{y}. \Phi(x,y) \land \forall \mathtt{x} \; \exists \mathtt{y}. \mathtt{Sh}(\mathtt{x}, \mathtt{y})$

$$\Omega = \{ \omega : \omega \models \forall xy. \Phi(x, y) \}$$

 $S_c = \{ \omega : \omega \models \forall xy. \Phi(x, y) \land \forall y. \neg Sh(c, y) \}$

 $e_0 = \text{FOMC}(\forall xy.\Phi(x,y) \land \forall x \exists y.Sh(x,y))$

 $s_l = \text{FOMC}(\forall xy.\Phi(x,y) \land P(x) \rightarrow \neg Sh(x,y) \land (|P| = l))$

 $\forall \mathtt{x} \mathtt{y}. \Phi(x,y) \land \forall \mathtt{x} \; \exists \mathtt{y}. \mathtt{Sh}(\mathtt{x}, \mathtt{y})$

$$\Omega = \{ \omega : \omega \models \forall xy. \Phi(x, y) \}$$

$$S_c = \{ \omega : \omega \models \forall xy. \Phi(x, y) \land \forall y. \neg Sh(c, y) \}$$

$$e_0 = \text{FOMC}(\forall xy.\Phi(x,y) \land \forall x \exists y.Sh(x,y))$$

 $s_l = \text{FOMC}(\forall xy.\Phi(x, y) \land P(x) \rightarrow \neg Sh(x, y) \land (|P| = l))$

From principle of inclusion-exclusion:

$$e_0 = \sum_{l=1}^{n} (-1)^l s_l \tag{3}$$

Extensions 0000●0000

Λ

Counting Quantifiers: Expressing Functionality

Λ

 $R(x,y):\Delta\to\Delta$

Extensions 00000●000

Λ

Counting Quantifiers: Expressing Functionality

Λ

Extensions 0000000000

Λ

Counting Quantifiers: Expressing Functionality

Λ

Extensions 000000000

Counting Quantifiers: Expressing Functionality

Extensions 000000000

Counting Quantifiers: Expressing Functionality

What is the cardinality of R in all functions ??

Extensions 000000000

Counting Quantifiers: Expressing Functionality

What is the cardinality of R in all functions $\ref{eq:relation} |\Delta|$

Introduction	

Extensions

Counting Quantifiers: Functionality Constraint

$$\forall x \exists^{=1} y. R(x, y)$$
$$\forall x \exists y. R(x, y) \land (|R| = |n|)$$

	FOMC in the two variable fragment	Extensions	
00000	0000000000000	00000000	000

Counting Quantifiers: Functionality Constraint

$$\forall x \exists^{=1} y. R(x, y)$$
$$\forall x \exists y. R(x, y) \land (|R| = |n|)$$

Given any formula Φ , $\Phi \land \forall x \exists y. R(x, y) \land (|R| = |n|)$ allows only the models where R is functional.

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		000000000	●00

Conclusion

Weighted Model Counting is an assembly language to a vast array of problems.

Introduction 00000	FOMC in the two variable fragment	Extensions 000000000	Conclusion

Conclusion

Weighted Model Counting is an assembly language to a vast array of problems.

Only first-order logic fragments have ever been shown to admit exact tractable counting.

Introduction	FOMC in the two variable fragment	Extensions	Conclusion
00000		000000000	●00

Conclusion

Weighted Model Counting is an assembly language to a vast array of problems.

Only first-order logic fragments have ever been shown to admit exact tractable counting.

In this work, we expand the fragments admitting tractable counting and provide a combinatorial framework that admits closed form formulae.

Introduction 00000	FOMC in the two variable fragment	Extensions 000000000	Conclusion

Future Works

- Consistency of probabilistic inference [Preprint Online]
- Expressing Scalable Consistent Models [Work in Progress]
- Approximate counting with guarantees [Work in Progress]

	FOMC in the two variable fragment		Conclusion
00000	0000000000000	00000000	000

Thank You !