|
D
UNIVERSITY
Department of Information Engineering
and Computer Science

Weighted Model Counting in First Order Logic

Doc in Progress
@ Department of Mathematics, UNITN

Sagar Malhotra? and Luciano Serafini *

'Fondazione Bruno Kessler
2University of Trento

Introduction
00000

Model Counting

Given a logical formula ®. e.g.
Trentino — Climber

MC ?

Introduction
00000

Model Counting

Given a logical formula ®. e.g.
Trentino — Climber

MC ?

Trentino Climber Trentino — Climber
1 1 1

1 0 0
0 1 1
0 0 1

MC =3

Introduction
(o] Jelele]

Weighted Model Counting

Given a logical formula ®. e.g.
Trentino — Climber
And a weight function e.g.
w(Trentino) = 2.5 w(—Trentino) =5
w(Climber) = 0.5 w(—Climber) = 1.5
WMC ?

Introduction
(o] Jelele]

Weighted Model Counting

Given a logical formula ®. e.g.
Trentino — Climber
And a weight function e.g.
w(Trentino) = 2.5 w(—Trentino) =5
w(Climber) = 0.5 w(—Climber) = 1.5
WMC ?

Trentino Climber Trentino — Climber

1 1 2.5 x0.5=1.25
1 0 25x15=125
0 1 o9x05=15
0 0 Ox15=175

WMC = 11.25 &

Introduction
[e]e] lele]

WMC Applications

Neuro-
Symbolic
Integration

Weighted Model
Counting

Network

Verification Reliability

Probabilistic
inference

Introduction
[e]e]e] lo]

Weighted Model Counting: Approaches

= Devising heuristic/approximation algorithms
WMC is intractable !

Introduction
[e]e]e] lo]

Weighted Model Counting: Approaches

= Devising heuristic/approximation algorithms
WMC is intractable !

= lIdentifying logical languages that admit efficient WMC
Today's presentation

Introduction
[e]ee]e])

Weighted First Order Model Counting

V. Trentino(z) — Climber(z)

A weight function associated to predicates:

w(Trentino) = 2.5 w(—Trentino) = 5
w(Climber) = 0.5 w(—Climber) = 1.5

What is the WFOMC for n people ?

Introduction
[e]ee]e])

Weighted First Order Model Counting

V. Trentino(z) — Climber(z)

A weight function associated to predicates:

w(Trentino) = 2.5 w(—Trentino) = 5
w(Climber) = 0.5 w(—Climber) = 1.5

What is the WFOMC for n people ?

Can we compute it in PTIME?

Introduction
[e]ee]e])

Weighted First Order Model Counting

V. Trentino(z) — Climber(z)

A weight function associated to predicates:

w(Trentino) = 2.5 w(—Trentino) = 5
w(Climber) = 0.5 w(—Climber) = 1.5

What is the WFOMC for n people ?

Can we compute it in PTIME?

Can we get a closed form formula 7

FOMC in the two variable
fragment

FOMC in the two variable fragment
O®0000000000000

FO? Language: 1-Types

We have a language with at most two variables , with the following
predicates:

= A unary predicate FBK(x)
= A binary predicate Shaves(x,y)

FOMC in the two variable fragment
O®0000000000000

FO? Language: 1-Types

We have a language with at most two variables , with the following
predicates:

= A unary predicate FBK(x)
= A binary predicate Shaves(x,y)

We have the following set of unary properties also called 1-types:
—FBK(c) A —Shaves(c, c)

—FBK(c) A Shaves(c, c)

FBK(c) A —Shaves(c, c)

FOMC in the two variable fragment
0080000000000 00

1- Type Enumeration

An arrangement of 1-Types

—FBK(c) A —Shaves(c, c) —FBK(c) A Shaves(c, ¢)

@ @
()
(=)

158 klzl k‘2:2 kr;:l

FBK(c) A —~Shaves(c, c)

FOMC in the two variable fragment
0008000000000 00

1- Type Enumeration

Another arrangement of 1-Types

—FBK(c) A —Shaves(c, c) —FBK(c) A Shaves(c, ¢)

© @
()
Q

158 klzl k‘2:2 kr;:l

FBK(c) A —~Shaves(c, c)

FOMC in the two variable fragment
0000800000000 00

1-Type Enumeration

Counting for fixed 1-Type cardinalities

« @
()
(=)

k: klzl k2:2 kgzl

6!
#Similar Arrangements = (kl, k’;/f:h) = 12 =180

10

FOMC in the two variable fragment
0000080000000 00

FO? Language: 2-tables

We have an FO? language, with the following predicates:

= A unary predicate FBK(x)
= A binary predicate Shaves(x,y)

We have the following set binary properties also called 2-tables:

—Shaves(c,d) A Shaves(d, c)
Shaves(c,d) A —Shaves(d, c)

—Shaves(c,d) A =Shaves(d, c)

11

FOMC in the two variable fragment
0000008000000 00

2- Table Enumeration

An arrangement for 2-tables

—Shaves(c,d) A Shaves(d, c)

Shaves(c,d) A =Shaves(d, c) —Shaves(c,d) A —Shaves(d, c)

12

FOMC in the two variable fragment
0000000800000 00

2- Table Enumeration given 1-Types

An arrangement for 2-tables given 1-types

@ ‘ C1

13

FOMC in the two variable fragment
0000000080000 00

2- Table Enumeration given 1-Types

Picking a sub graph: Pick a pair of 1-Types

14

FOMC in the two variable fragment
0000000008000 00

2- Table Enumeration given 1-Types

Picking a sub graph: Pick 2-Tables between them

@ C1

15

FOMC in the two variable fragment
0000000000800 00

2- Table Enumeration

Enumerating 2-tables given 1-types

}Ll =¥ }Lg =]l /1;; =3

16

FOMC in the two variable fragment
0000000000800 00

2- Table Enumeration

Enumerating 2-tables given 1-types

}Ll =¥ }Lg =]l /1;; =3

X _(@x2)y 6
hi he b I

16

FOMC in the two variable fragment
0000000000080 00

Enumerating all models over 1-types and 2-tables

k,h
kik if i j
k(i,j) =< "/}
) =

17

FOMC in the two variable fragment
000000000000 e00

Adding Formulas : Vzy.®(z, y)

A formula Vzy.®(z, y), allows some and disallows other 1-Type and
2-Table configuration. For Example:

—Shaves(x, x)
Shaves(x,y) — Shaves(y, x)
FBK(x) A Shaves(x,y) — FBK(y)

18

FOMC in the two variable fragment
0000000000000 e0

Adding Formulas : Vzy.®(z, y)

—Shaves(x, x)
Shaves(x,y) — Shaves(y, x)
FBK(x) A Shaves(x,y) — FBK(y)

Not allowed:

—FBK(c) A =Sh(c, c) A FBK(d) A —=Sh(d,d)A

© @

Allowed:

FBK(c) A =Sh(c,c) AFBK(d) A =Sh(d,d)A

& @ .

FOMC in the two variable fragment
0000000000000 0e

FOMC in FO?: VaVy.®(z, y)

FOMC(®,n) =
n (i,) B
Z <k1-, ku) H <h§j. lz,l"j) H
Eh 1<i<j<u 7S 1<0<b
Unary Properties Binary Properties

20

Extensions

Extensions
0O®0000000

Cardinality Constraints

—Shaves(x, x)

Shaves(x,y) — Shaves(y, x)
FBK(x) A Shaves(x,y) — FBK(y)
FBK(x)| = 2

21

Extensions
0O®0000000

Cardinality Constraints

—Shaves(x, x)

Shaves(x,y) — Shaves(y, x)
FBK(x) A Shaves(x,y) — FBK(y)
FBK(x)| = 2

ky : —=FBK(c) A —Shaves(c, c)
ky :—FBK(c) A Shaves(c,c)
]\,’;J 5

3 .

FBK(c) A —Shaves(c, ¢)

21

Extensions
0O®0000000

Cardinality Constraints

—Shaves(x, x)

Shaves(x,y) — Shaves(y, x)
FBK(x) A Shaves(x,y) — FBK(y)
FBK(x)| = 2

ky : —=FBK(c) A —Shaves(c, c)
ky :—FBK(c) A Shaves(c,c)
]\,’;J 5

3 .

FBK(c) A —Shaves(c, ¢)

21

Extensions
[e]e] lelelelele]e]

Principle of Inclusion Exclusion

= Let) be a set of objects
» S={5,...,5,} be a set of properties of
= ¢y : The count of objects with NONE of the properties in S

= Let) C S, then Ng is the count of objects with AT LEAST the
properties in @)

22

Extensions
[e]e] lelelelele]e]

Principle of Inclusion Exclusion

= Let) be a set of objects

» S={5,...,5,} be a set of properties of

= ¢y : The count of objects with NONE of the properties in S

= Let) C S, then Ng is the count of objects with AT LEAST the
properties in @

We define,

si= Y Ng (1)

|Ql=i

22

Extensions
[e]e] lelelelele]e]

Principle of Inclusion Exclusion

= Let) be a set of objects
» S={5,...,5,} be a set of properties of
= ¢y : The count of objects with NONE of the properties in S

= Let) C S, then Ng is the count of objects with AT LEAST the
properties in @)

We define,
si= Y Ng (1)
|Q|=1
Then the following relation holds:
e =Y (—1)'s (2)

=0

22

Extensions
[e]e]e] lelelele]e]

FOMC Existential Quantifiers (Example)

Vxy.®(z, y)AVx Jy.Sh(x,y)

23

Extensions
[e]e]e] lelelele]e]

FOMC Existential Quantifiers (Example)

Vxy.®(z, y)AVx Jy.Sh(x,y)

Q={w:wkE=Vry®(z,v9)}

23

Extensions
[e]e]e] lelelele]e]

FOMC Existential Quantifiers (Example)

Vxy.®(z, y)AVx Jy.Sh(x,y)

Q={w:wkE=Vry®(z,v9)}

Se ={w:w EVoy.®(z, y) AVy.=Sh(c, y)}

23

Extensions
[e]e]e] lelelele]e]

FOMC Existential Quantifiers (Example)

Vxy.®(z, y)AVx Jy.Sh(x,y)

Q={w:wkE=Vry®(z,v9)}

Se ={w:w EVoy.®(z, y) AVy.=Sh(c, y)}

eg = FOMC(Vay.®(z, y) A Vo 3y.Sh(z, y))

23

Extensions
[e]e]e] lelelele]e]

FOMC Existential Quantifiers (Example)

Vxy.®(z, y)AVx Jy.Sh(x,y)

Q={w:wkE=Vry®(z,v9)}

Se ={w:w EVoy.®(z, y) AVy.=Sh(c, y)}

eg = FOMC(Vay.®(z, y) A Vo 3y.Sh(z, y))

s = FOMC(Vay.®(z, y) A P(xz) — —Sh(z, y) A (|P| = 1))

23

Extensions
[e]e]e] lelelele]e]

FOMC Existential Quantifiers (Example)

Vxy.®(z, y)AVx Jy.Sh(x,y)
Q={w:wEVry®(z,9)}
Se ={w:w EVoy.®(z, y) AVy.=Sh(c, y)}
eg = FOMC(Vay.®(z, y) A Vo 3y.Sh(z, y))

s = FOMC(Vay.®(z, y) A P(xz) — —Sh(z, y) A (|P| = 1))

From principle of inclusion-exclusion:
n
e = Z(—l)lﬂ (3)
=1
23

Extensions
[e]e]ele] lelele]e]

Counting Quantifiers: Expressing Functionality

R(z,y) : A = A

24

Extensions
[e]e]ele]e] Jolele]

Counting Quantifiers: Expressing Functionality

25

Extensions
[e]e]ele]e]e] lole]

Counting Quantifiers: Expressing Functionality

26

Extensions
000000080

Counting Quantifiers: Expressing Functionality

Vo 371y, R(z, y)

A

27

Extensions
000000080

Counting Quantifiers: Expressing Functionality

Vo 371y, R(z, y)

[]
[
= :
[
[

What is the cardinality of R in all functions ?7

27

Extensions
000000080

Counting Quantifiers: Expressing Functionality

Vo 371y, R(z, y)

[]
[
= :
[
[

What is the cardinality of R in all functions ?7
A

27

Extensions
00000000 e

Counting Quantifiers: Functionality Constraint

Vz Elzly.R(:L', Y)
Vz 3y.R(z, y) A (|R| = |n])

28

Extensions
00000000 e

Counting Quantifiers: Functionality Constraint

Vz Elzly.R(:L', Y)
Vz 3y.R(z, y) A (|R| = |n])

Given any formula @, ® AVz Jy.R(z, y) A (|R| = |n|) allows only the
models where R is functional.

28

Conclusion
[Jele}

Conclusion

Weighted Model Counting is an assembly language to a vast array of
problems.

29

Conclusion
[Jele}

Conclusion

Weighted Model Counting is an assembly language to a vast array of
problems.

Only first-order logic fragments have ever been shown to admit exact
tractable counting.

29

Conclusion
[Jele}

Conclusion

Weighted Model Counting is an assembly language to a vast array of
problems.

Only first-order logic fragments have ever been shown to admit exact
tractable counting.

In this work, we expand the fragments admitting tractable counting and
provide a combinatorial framework that admits closed form formulae.

29

Conclusion
[e] Je}

Future Works

= Consistency of probabilistic inference [Preprint Onling]
= Expressing Scalable Consistent Models [Work in Progress]

= Approximate counting with guarantees [Work in Progress]

30

Introduction FOMC in the two variable fragmen Extensions Conclusion
[e]e]e]ele) 0000000000000 00 000000000 [ele]

	 Model Counting
	FOMC in the two variable fragment
	 Extensions
	 Conclusion

