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Weighted Model Counting

Given a logical formula ®. e.g.
Trentino — Climber
And a weight function e.g.
w(Trentino) = 2.5 w(—Trentino) =5
w(Climber) = 0.5 w(—Climber) = 1.5
WMC ?

Trentino  Climber Trentino — Climber

1 1 2.5 x0.5=1.25
1 0 25x15=125
0 1 o9x05=15
0 0 Ox15=175

WMC = 11.25 &
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WMC Applications
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Weighted Model Counting: Approaches

= Devising heuristic/approximation algorithms
WMC is intractable !

= lIdentifying logical languages that admit efficient WMC
Today's presentation
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Weighted First Order Model Counting

V. Trentino(z) — Climber(z)

A weight function associated to predicates:

w(Trentino) = 2.5 w(—Trentino) = 5
w(Climber) = 0.5 w(—Climber) = 1.5

What is the WFOMC for n people ?

Can we compute it in PTIME?

Can we get a closed form formula 7
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FO? Language: 1-Types

We have a language with at most two variables , with the following
predicates:

= A unary predicate FBK(x)
= A binary predicate Shaves(x,y)

We have the following set of unary properties also called 1-types:
—FBK(c) A —Shaves(c, c)

—FBK(c) A Shaves(c, c)

FBK(c) A —Shaves(c, c)
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1- Type Enumeration

An arrangement of 1-Types

—FBK(c) A —Shaves(c, c) —FBK(c) A Shaves(c, ¢)
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FBK(c) A —~Shaves(c, c)
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1- Type Enumeration

Another arrangement of 1-Types

—FBK(c) A —Shaves(c, c) —FBK(c) A Shaves(c, ¢)
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FBK(c) A —~Shaves(c, c)
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1-Type Enumeration

Counting for fixed 1-Type cardinalities
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#Similar Arrangements = (kl, k’;/f:h ) = 12 =180
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FO? Language: 2-tables

We have an FO? language, with the following predicates:

= A unary predicate FBK(x)
= A binary predicate Shaves(x,y)

We have the following set binary properties also called 2-tables:

—Shaves(c,d) A Shaves(d, c)
Shaves(c,d) A —Shaves(d, c)

—Shaves(c,d) A =Shaves(d, c)
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2- Table Enumeration

An arrangement for 2-tables

—Shaves(c,d) A Shaves(d, c)

Shaves(c,d) A =Shaves(d, c) —Shaves(c,d) A —Shaves(d, c)
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2- Table Enumeration given 1-Types

An arrangement for 2-tables given 1-types

@ ‘ C1
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2- Table Enumeration given 1-Types

Picking a sub graph: Pick a pair of 1-Types
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2- Table Enumeration given 1-Types

Picking a sub graph: Pick 2-Tables between them

@ C1
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2- Table Enumeration

Enumerating 2-tables given 1-types

}Ll =¥ }Lg = ]l /1;; =3
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2- Table Enumeration

Enumerating 2-tables given 1-types

}Ll =¥ }Lg = ]l /1;; =3

X _(@x2)y 6
hi he b I
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Enumerating all models over 1-types and 2-tables

k,h
kik if i j
k(i,j) =< "/}
) =
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Adding Formulas : Vzy.®(z, y)

A formula Vzy.®(z, y), allows some and disallows other 1-Type and
2-Table configuration. For Example:

—Shaves(x, x)
Shaves(x,y) — Shaves(y, x)
FBK(x) A Shaves(x,y) — FBK(y)

18
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Adding Formulas : Vzy.®(z, y)

—Shaves(x, x)
Shaves(x,y) — Shaves(y, x)
FBK(x) A Shaves(x,y) — FBK(y)

Not allowed:

—FBK(c) A =Sh(c, c) A FBK(d) A —=Sh(d,d)A

© @

Allowed:

FBK(c) A =Sh(c,c) AFBK(d) A =Sh(d,d)A

& @ .
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FOMC in FO?: VaVy.®(z, y)

FOMC(®,n) =
n (i, ) B
Z <k1-, ku) H <h§j. lz,l"j) H
Eh 1<i<j<u 7S 1<0<b
Unary Properties Binary Properties

20
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Cardinality Constraints

—Shaves(x, x)

Shaves(x,y) — Shaves(y, x)
FBK(x) A Shaves(x,y) — FBK(y)
FBK(x)| = 2

21
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Cardinality Constraints

—Shaves(x, x)

Shaves(x,y) — Shaves(y, x)
FBK(x) A Shaves(x,y) — FBK(y)
FBK(x)| = 2

ky : —=FBK(c) A —Shaves(c, c)
ky :—FBK(c) A Shaves(c,c)
]\,’;J 5

3 .

FBK(c) A —Shaves(c, ¢)
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Principle of Inclusion Exclusion

= Let ) be a set of objects
» S={5,...,5,} be a set of properties of
= ¢y : The count of objects with NONE of the properties in S

= Let ) C S, then Ng is the count of objects with AT LEAST the
properties in @)
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Principle of Inclusion Exclusion

= Let ) be a set of objects

» S={5,...,5,} be a set of properties of

= ¢y : The count of objects with NONE of the properties in S

= Let ) C S, then Ng is the count of objects with AT LEAST the
properties in @

We define,

si= Y Ng (1)

|Ql=i
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Principle of Inclusion Exclusion

= Let ) be a set of objects
» S={5,...,5,} be a set of properties of
= ¢y : The count of objects with NONE of the properties in S

= Let ) C S, then Ng is the count of objects with AT LEAST the
properties in @)

We define,
si= Y Ng (1)
|Q|=1
Then the following relation holds:
e =Y (—1)'s (2)

=0
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FOMC Existential Quantifiers (Example)

Vxy.®(z, y)AVx Jy.Sh(x,y)
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FOMC Existential Quantifiers (Example)

Vxy.®(z, y)AVx Jy.Sh(x,y)

Q={w:wkE=Vry®(z,v9)}

Se ={w:w EVoy.®(z, y) AVy.=Sh(c, y)}

eg = FOMC(Vay.®(z, y) A Vo 3y.Sh(z, y))

s = FOMC(Vay.®(z, y) A P(xz) — —Sh(z, y) A (|P| = 1))
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FOMC Existential Quantifiers (Example)

Vxy.®(z, y)AVx Jy.Sh(x,y)
Q={w:wEVry®(z,9)}
Se ={w:w EVoy.®(z, y) AVy.=Sh(c, y)}
eg = FOMC(Vay.®(z, y) A Vo 3y.Sh(z, y))

s = FOMC(Vay.®(z, y) A P(xz) — —Sh(z, y) A (|P| = 1))

From principle of inclusion-exclusion:
n
e = Z(—l)lﬂ (3)
=1
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Counting Quantifiers: Expressing Functionality

R(z,y) : A = A
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Counting Quantifiers: Expressing Functionality
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Counting Quantifiers: Expressing Functionality
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Counting Quantifiers: Expressing Functionality

Vo 371y, R(z, y)

A
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Counting Quantifiers: Expressing Functionality

Vo 371y, R(z, y)

[ ]
[
= :
[
[

What is the cardinality of R in all functions ?7
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Counting Quantifiers: Expressing Functionality

Vo 371y, R(z, y)

[ ]
[
= :
[
[

What is the cardinality of R in all functions ?7
A
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Counting Quantifiers: Functionality Constraint

Vz Elzly.R(:L', Y)
Vz 3y.R(z, y) A (|R| = |n])
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Counting Quantifiers: Functionality Constraint

Vz Elzly.R(:L', Y)
Vz 3y.R(z, y) A (|R| = |n])

Given any formula @, ® AVz Jy.R(z, y) A (|R| = |n|) allows only the
models where R is functional.
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Conclusion

Weighted Model Counting is an assembly language to a vast array of
problems.
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Conclusion

Weighted Model Counting is an assembly language to a vast array of
problems.

Only first-order logic fragments have ever been shown to admit exact
tractable counting.
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Conclusion

Weighted Model Counting is an assembly language to a vast array of
problems.

Only first-order logic fragments have ever been shown to admit exact
tractable counting.

In this work, we expand the fragments admitting tractable counting and
provide a combinatorial framework that admits closed form formulae.
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Future Works

= Consistency of probabilistic inference [Preprint Onling]
= Expressing Scalable Consistent Models [Work in Progress]

= Approximate counting with guarantees [Work in Progress]
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