Weighted Model Counting in FO^{2} with Cardinality Constraints and Counting Quantifiers
Sagar Malhotra* ${ }^{1,2} \quad$ Luciano Serafinit ${ }^{\dagger}$
UNIVERSITÀ
DI TRENTO

Weighted First Order Model Counting

$$
\begin{aligned}
\operatorname{FOMC}(\Phi, n) & =\sum_{\omega \in \Omega} \mathbb{1}(\omega \models \Phi) \\
\operatorname{WFOMC}(\Phi, n) & =\sum_{\omega \in \Omega} \mathbb{1}(\omega \models \Phi) \times w(\omega)
\end{aligned}
$$

Example
$\Phi=\forall x y . A x \wedge \mathrm{Rxy} \rightarrow \mathrm{Ay}$

$\mathrm{OMC}(\Phi, n)$?

Unary and Binary Properties in FO
Let us have a FOL language with a unary predicate A and a binary predicate R. Then for any domain constant c exactly one of the following unary property is true:

$$
\begin{equation*}
\mathrm{Ac} \wedge \mathrm{Rcc}|\mathrm{Ac} \wedge \neg \mathrm{Rcc}| \neg \mathrm{Ac} \wedge \mathrm{Rcc} \mid \neg \mathrm{Ac} \wedge \neg \mathrm{Rc} \tag{1}
\end{equation*}
$$

$$
\text { For } 5 \text { domain elements some examples of unary configurations are given as follows }
$$

$\binom{5}{(1,3,0,1)}=\frac{51}{13.3011}$
$\left(\frac{5}{5,0,2,1}\right)=\frac{5!}{2.0 \mid 2!}$

(c) ${ }^{\text {b }}{ }^{\text {(}}$ a
5
$\left.\begin{array}{c}1,0,0,4 \\ k_{1}=2\end{array}\right)=\frac{51}{1.010 .04}$
$k_{2}=1$

In general, for a language with u unary properties over n domain elements, we have $\binom{n}{\frac{n}{k}}=\frac{n!}{\prod_{i} k_{i}^{\prime}}$ ways such that k_{i} constants realize the $i^{\text {th }}$ property, where $\vec{k}=\left(k_{1}, \ldots, k_{u}\right)$.
For any pair of domain constants (c, d), exactly one of the following binary property is true:
Rcd \wedge Rdc

(a) (b) (c) d

$\wedge \operatorname{Rdc} \mid \quad \neg \operatorname{Rcd} \wedge \neg R d c$
Given a unary configuratio

properties by of domain elements.

$\binom{\left.k_{2}^{2} \cdot(k-1) / 2 / 2\right)}{0,0,1,0}=\frac{(1 \times 1)!}{011000!}$ $h_{1}^{22}=0 \quad h_{22}^{22_{2}}=0$
$h_{2}^{2}=1 \quad h_{1}^{22}=0$

$\binom{\left(k_{1}, k, 1,2\right)}{1,1,1,1}=\frac{(2 \times 2)!}{11111!!!}$
$\begin{array}{ll}(1,1,1) \\ h_{1}^{2}=1 \\ h_{1}=1 & h_{2}=1 \\ h_{2}=1\end{array}$

 $h_{1}^{2}=2 h_{2}^{2}=0$
$h_{3}^{2}=2=2$
$h_{4}^{1 / 2}=0$

In general, for a language with b binary properties, given a configuration of unary properties by \vec{k}, then for any pair of unary properties i and j, we have $\left(\begin{array}{l}\left.h_{1}^{i j} . . h_{b}^{i j}\right)\end{array}\right)$ possible ways such that $h_{v}^{i j}$ pairs of constants realize the $v^{\text {th }}$ binary property, where

$$
k(i, j)= \begin{cases}k_{i} \cdot\left(k_{i}-1\right) / 2 & i=j \\ k_{i} \cdot k_{j} & i \neq j\end{cases}
$$

$\operatorname{FOMC}(\forall \mathrm{xy} . \Phi(\mathrm{x}, \mathrm{y}), n)$
Principle of Inclusion Exclusion

Using arguments from the previous section we have that the number of interpretations such that k_{i} constants (say c) realize the $i^{i t h}$ unary property (denoted by $\mathrm{i}(\mathrm{c})$), and $h_{v}^{i j}$ pairs of constants (c, d) such that $\mathrm{i}(\mathrm{c}) \wedge \mathrm{j}(\mathrm{d})$ and the pair (c, d) realizes the $v^{\text {th }}$ binary property i.e. $\mathrm{i}(\mathrm{c}) \wedge \mathrm{j}(\mathrm{d}) \wedge \mathrm{v}(\mathrm{c}, \mathrm{d})$ is given by

(3)
$\omega \models \forall x y . \Phi(x, y)$ if and only if all the property configurations of each pair of domain constants in ω is allowed by the formula $\forall x y . \Phi(x, y)$. For example, $\forall \mathrm{xy} . \mathrm{Ax} \wedge \mathrm{Rxy} \rightarrow$ Ay does not allow a pair of constants (c,d) such that $\operatorname{Ac} \wedge \operatorname{Rcc} \wedge \neg A d \wedge \neg \operatorname{Rdd} \wedge \operatorname{Rcd} \wedge \operatorname{Rdc}$ i.e. the following sub-structure is never allowed:

Hence, we introduce an indicator variable $n_{i j v}$ for each configuration $\mathrm{i}(\mathrm{c}) \wedge \mathrm{j}(\mathrm{d}) \wedge \mathrm{v}(\mathrm{c}, \mathrm{d})$ which is 1 if :

$$
\mathrm{i}(\mathrm{x}) \wedge \mathrm{j}(\mathrm{y}) \wedge \mathrm{v}(\mathrm{x}, \mathrm{y}) \vDash \Phi(\mathrm{x}, \mathrm{x}) \wedge \Phi(\mathrm{x}, \mathrm{y}) \wedge \Phi(\mathrm{y}, \mathrm{x}) \wedge \Phi(\mathrm{y}, \mathrm{y})
$$

and 0 otherwise
Hence, given a configuration represented by \vec{k} and $\left\{h^{\vec{i}}\right\}_{i j}$ we have the following possible realizations:

$$
F\left(\vec{k}, \vec{h},\left\{n_{i j v}\right\}\right)=\binom{n}{\vec{k}} \prod_{1 \leq i \leq j \leq u}\binom{k(i, j)}{h^{i j}} \prod_{0 \leq v \leq b}\left(n_{i j v}\right)^{h^{i j}}
$$

Hence,

$$
\operatorname{FOMC}(\forall x y \cdot \Phi(\mathrm{x}, \mathrm{y}), n)=\sum_{\vec{k}, \vec{h}} F\left(\vec{k}, \vec{h},\left\{n_{i j v}\right\}\right)
$$

Cardinality Constraints
Cardinality Constraints are constraints on the number of times a certain predicate is true in a given FOL interpretation.
Example:

$$
\Phi:=(\forall x y . A x \wedge \operatorname{Rxy} \rightarrow \mathrm{Ay}) \wedge(|\mathrm{A}|=\mathrm{m})
$$

Counting with a Cardinality Constraint ρ can be done by simply allowing cardinality configurations of the properties, which agree with the cardinality constraint.

$$
\operatorname{FOMC}(\Phi \wedge \rho, n)=\sum_{\rho \models \vec{k}, \vec{h}} F\left(\vec{k}, \vec{h},\left\{n_{i j v}\right\}\right)
$$

In the above example, we can obtain the cardinality constraint by simply defining $\rho:=k_{1}+k_{2}=m$

Let Ω be a set of objects

$\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$ be a set of properties of Ω
t obiest NONE of the pronerties in S

- Let $Q \subseteq S$, then N_{Q} is the count of objects with AT LEAST the properties in Q We define,

$$
s_{l}=\sum_{|\mathcal{Q}|=l} N_{Q}
$$

Then the following relation holds:

$$
\begin{equation*}
e_{0}=\sum_{l=0}^{m}(-1)^{l} s_{l} \tag{8}
\end{equation*}
$$

Existential Quantifiers (Special Case)

FOMC($(\mathrm{xy} . \Phi(\mathrm{x}, \mathrm{y}) \wedge \forall \mathrm{zx} \exists \mathrm{y} \cdot \mathrm{Rxy}, n)$:

$\Omega=\{\omega: \omega \vDash \forall \mathrm{xy} . \Phi(\mathrm{x}, \mathrm{y})\}$
$S_{c}=\{\omega: \omega \vDash \forall \mathrm{xy} . \Phi(\mathrm{x}, \mathrm{y}) \wedge \forall \mathrm{y} . \neg \mathrm{Rcy}\}$
$=\operatorname{FOMC}(\forall x y . \Phi(x, y) \wedge \operatorname{Px} \rightarrow \neg \operatorname{Rxy} \wedge(|\mathrm{P}|=l))$

Counting Quantifiers (Special Case)

```
OMC(\forallxy.\Phi(x,y)\wedge\forallx.(A(x)\leftrightarrow\exists揞y.Rxy),n)?
*y.\Phi(x,y)\wedge\forallx.((Ax \vee Bx) }\mp@subsup{->}{}{\prime=1}y.Rxy
*x. }\Phi(x,y)\wedge\forallx.(Ax\veeBx)->\existsy.Rxy
\forallxy.Mxy \leftrightarrow(Ax\veeBx)\wedgeRxy
\wedge |M| = |A| + |B|
STEP 2: Inclusion Exclusion:
KEY IDEA: Let \(S_{c}=\left\{\omega: \omega \neq \neg A c \wedge \exists^{=1} \mathrm{y}\right.\) Rcy \(\}\) Clearly we want the count of models \(\omega\) such that \(\omega \notin S_{c}\) for any \(c\) i.e.
\(e_{0}=\operatorname{FOMC}\left(\forall x y \cdot \Phi(x, y) \wedge \forall x \cdot\left(\operatorname{Ax} \leftrightarrow \exists^{=1} \mathrm{y} \cdot \mathrm{Rxy}\right)\right)\)
\(s_{l}=\operatorname{FOMC}\left(\forall x y . \Phi(\mathrm{x}, \mathrm{y}) \wedge \forall \mathrm{x} .\left((\mathrm{Ax} \vee \mathrm{Bx}) \rightarrow \exists^{=1} \mathrm{y} . \mathrm{Rxy}\right)\right.\) \(\wedge \forall \mathrm{x} .(\mathrm{Ax} \rightarrow \neg \mathrm{Bx}) \wedge(|B|=l))\)

\section*{Weighted Model Counting}
```

FOMC can be converted to WFOMC by just adding a multiplicative factor $w(\vec{k}, \vec{h})$ to every occur- ence of $F\left(\vec{k}, \vec{h},\left\{n_{i j v}\right\}\right)$ in any counting formula:

$$
(\vec{k}, \vec{h}) \mapsto w(\vec{k}, \vec{h}) \in \mathbb{R}^{+}
$$

$w(\vec{k}, \bar{h})$ is a strictly more expressive weight function than symmetric weight functions.

```
```

