

Weighted Model Counting in FO² with Cardinality Constraints and Counting Quantifiers

Weighted First Order Model Counting

$$FOMC(\Phi, n) = \sum_{\omega \in \Omega} \mathbb{1}(\omega \models \Phi)$$
$$WFOMC(\Phi, n) = \sum_{\omega \in \Omega} \mathbb{1}(\omega \models \Phi) \times w(\omega)$$

Example:

$$\Phi = \forall \mathtt{x} \mathtt{y}. \mathtt{A} \mathtt{x} \land \mathtt{R} \mathtt{x} \mathtt{y} \to \mathtt{A} \mathtt{y}$$

$FOMC(\Phi, n)$?

Unary and Binary Properties in FO^2

Let us have a FOL language with a unary predicate **A** and a binary predicate **R**. Then for any domain constant **c** exactly one of the following **unary** property is true:

 $Ac \land Rcc \qquad Ac \land \neg Rcc \qquad \neg Ac \land Rcc \qquad \neg Ac \land \neg Rcc$ For 5 domain elements some examples of **unary** configurations are given as follows:

In general, for a language with u unary properties over n domain elements, we have $\binom{n}{\vec{k}} = \frac{n!}{\prod_i k_i!}$ ways such that k_i constants realize the ith property, where $\vec{k} = (k_1, ..., k_u)$.

For any pair of domain constants (c, d), exactly one of the following **binary** property is true:

Given a unary configuration 🧧 🥑 🕑 🕝 🏓 of domain elements. Following are some possible realizations of binary properties by the pairs of domain elements.

In general, for a language with b binary properties, given a configuration of unary properties by \vec{k} , then for any pair of unary properties i and j, we have $\binom{k(i,j)}{h_1^{ij}\dots h_p^{ij}}$ possible ways such that h_v^{ij} pairs of constants realize the v^{th} binary property, where

$$k(i,j) = \begin{cases} k_i \cdot (k_i - 1)/2 & i = j \\ k_i \cdot k_j & i \neq j \end{cases}$$

Sagar Malhotra^{* 1,2} Luciano Serafini^{† 1}

¹Fondazione Bruno Kessler, Italy

$FOMC(\forall xy.\Phi(x,y),n)$

Using arguments from the previous section we have that the number of interpretations such that k_i constants (say c) realize the i^{th} unary property (denoted by i(c)), and h_v^{ij} pairs of constants (c, d) such that $\mathbf{i}(\mathbf{c}) \wedge \mathbf{j}(\mathbf{d})$ and the pair (\mathbf{c}, \mathbf{d}) realizes the v^{th} binary property i.e. $\mathbf{i}(\mathbf{c}) \wedge \mathbf{j}(\mathbf{d}) \wedge \mathbf{v}(\mathbf{c}, \mathbf{d})$ is given by :

 $\binom{n}{\vec{k}} \prod_{1 \leq i \leq n} \binom{k(i,j)}{\vec{h}^{ij}}$

 $\omega \models \forall xy. \Phi(x, y)$ if and only if all the property configurations of each pair of domain constants in ω is allowed by the formula $\forall xy. \Phi(x, y)$. For example, $\forall xy. Ax \land Rxy \rightarrow Ay$ does not allow a pair of constants (c, d) such that $Ac \land Rcc \land \neg Ad \land \neg Rdd \land Rcd \land Rdc$ i.e. the following sub-structure is never allowed:

Hence, we introduce an indicator variable n_{ijv} for each co is 1 if:

$$\mathbf{i}(\mathbf{x}) \wedge \mathbf{j}(\mathbf{y}) \wedge \mathbf{v}(\mathbf{x}, \mathbf{y}) \models \Phi(\mathbf{x}, \mathbf{x}) \wedge \Phi(\mathbf{x}, \mathbf{y})$$

and 0 otherwise.

Hence, given a configuration represented by \vec{k} and $\{h^{ij}\}_{ij}$ we have the following possible realizations:

$$F(\vec{k},\vec{h},\{n_{ijv}\}) = \binom{n}{\vec{k}} \prod_{1 \le i \le j \le u} \binom{k(i,j)}{\vec{h}^{ij}} \prod_{0 \le v \le b} (n_{ijv})^{h_v^{ij}}$$
(4)

Hence,

Cardinality Constraints

Cardinality Constraints are constraints on the number of times a certain predicate is true in a given FOL interpretation.

Example:

$$\Phi := (\forall \mathtt{x} \mathtt{y}.\mathtt{A} \mathtt{x} \land \mathtt{R} \mathtt{x} \mathtt{y} \to \mathtt{A} \mathtt{y}) \land (|\mathtt{A}| = \mathtt{m})$$

Counting with a Cardinality Constraint ρ can be done by simply allowing cardinality configurations of the properties, which agree with the cardinality constraint.

$$\operatorname{FOMC}(\Phi \wedge \rho, n) = \sum_{\rho \models \vec{k}, \vec{h}} F(\vec{k}$$

In the above example, we can obtain the cardinality constraint by simply defining

$$\rho := \mathbf{k}_1 + k_2 = m$$

(1)

 $\binom{5}{1,0,0,4} = \frac{5!}{1!0!0!4!}$ $k_1 = 2$ $k_2 = 1$ $k_3 = 1$ $k_4 = 1$

Rcd \wedge RdcRcd \wedge \neg Rdc \neg Rcd \wedge \neg Rdc \neg Rcd \wedge \neg Rdc \neg Rcd \wedge \neg Rdc (2)

²University of Trento, Italy

onfiguration
$$i(c) \land j(d) \land v(c,d)$$
 which

 $\mathbf{y}) \land \Phi(\mathbf{y}, \mathbf{x}) \land \Phi(\mathbf{y}, \mathbf{y})$

FOMC($\forall xy. \Phi(x, y), n$) = $\sum_{k \in I} F(\vec{k}, \vec{h}, \{n_{ijv}\})$ (5)

 $(\vec{x}, \vec{h}, \{n_{ijv}\})$ (6)

Principle of Inclusion Exclusion

- Let Ω be a set of objects
- $\mathcal{S} = \{S_1, \ldots, S_m\}$ be a set of properties of Ω
- e_0 : The count of objects with **NONE** of the properties in S

We define,

Then the following relation holds:

Existential Quantifiers (Special Case)

FOMC($\forall xy. \Phi(x, y) \land \forall x \exists y. Rxy, n$)?

- $\Omega = \{ \omega : \omega \models$ $S_c = \{ \omega : \omega \models$ $s_l = \text{FOMC}(\forall z)$
- $e_0 = \text{FOMC}(\forall \mathbf{x})$

Counting Quantifiers (Special Case)

FOMC($\forall xy. \Phi(x, y) \land \forall x. (A(x) \leftrightarrow \exists^{=1}y.)$ STEP 1: FOMC for :
$\begin{array}{l} \forall \mathbf{x} \mathbf{y} . \Phi(\mathbf{x}, \mathbf{y}) \\ \wedge \forall \mathbf{x} . (\mathbf{B} \mathbf{x} \rightarrow \mathbf{x}) \end{array}$
which is equal to FOMC for:
$egin{aligned} & orall \mathbf{x} \mathbf{y}. \Phi(\mathbf{x}, \mathbf{y}) \ & \wedge orall \mathbf{x}. (\mathbf{B} \mathbf{x} - \mathbf{x}) & \wedge orall \mathbf{x} \mathbf{y}. \mathbf{M} \mathbf{x} \mathbf{y} \ & \wedge \mathbf{M} = \mathbf{A} \end{aligned}$
STEP 2: Inclusion Exclusion:
KEY IDEA: Let $S_c = \{\omega : \omega \models \neg Ac \land \exists^{=1} \\ \omega \notin S_c \text{ for any } c \text{ i.e.} \\ e_0 = \text{FOMC}(\forall z)$
$s_l = ext{FOMC}(orall extbf{xy}. \ \mathbf{xy}. \$

Weighted Model Counting

rence of $F(\vec{k}, \vec{h}, \{n_{ijv}\})$ in any counting formula:

 $w(\vec{k},\vec{h})$ is a strictly more expressive weight function than symmetric weight functions.

UNIVERSITÀ DI TRENTO

• Let $Q \subseteq S$, then N_Q is the count of objects with AT LEAST the properties in Q

$$s_l = \sum_{|\mathcal{Q}|=l} N_Q \tag{7}$$

$$e_0 = \sum_{l=0}^{m} (-1)^l s_l \tag{8}$$

$= \forall xy. \Phi(x, y) \}$	(9)
$= \forall \mathtt{x} \mathtt{y}. \Phi(\mathtt{x}, \mathtt{y}) \land \forall \mathtt{y}. \neg \mathtt{Rc} \mathtt{y} \}$	(10)
$\forall \mathtt{xy}. \Phi(\mathtt{x}, \mathtt{y}) \land \mathtt{Px} \rightarrow \neg \mathtt{Rxy} \land (\mathtt{P} = l))$	(11)
$\forall xy. \Phi(x, y) \land \forall x \exists y. Rxy)$	(12)

$(\mathbf{Rxy}), n)$

$$(13)$$
 $\forall \mathbf{x}.((\mathbf{A}\mathbf{x} \lor \mathbf{B}\mathbf{x}) \to \exists^{=1}\mathbf{y}.\mathbf{R}\mathbf{x}\mathbf{y})$
 $\Rightarrow \neg \mathbf{A}\mathbf{x})$

$$y) \land \forall x.((Ax \lor Bx) \rightarrow \exists y.Rxy)$$
(14)

$$\rightarrow \neg Ax)$$
(15)

$$y \leftrightarrow ((Ax \lor Bx) \land Rxy)$$
(16)

$$A| + |B|$$
(17)

⁻¹y.Rcy} Clearly, we want the count of models ω such that

$$\begin{split} &\langle \mathbf{x}\mathbf{y}.\Phi(\mathbf{x},\mathbf{y}) \land \forall \mathbf{x}.(\mathbf{A}\mathbf{x} \leftrightarrow \exists^{=1}\mathbf{y}.\mathbf{R}\mathbf{x}\mathbf{y})) \\ &\Phi(\mathbf{x},\mathbf{y}) \land \forall \mathbf{x}.((\mathbf{A}\mathbf{x} \lor \mathbf{B}\mathbf{x}) \rightarrow \exists^{=1}\mathbf{y}.\mathbf{R}\mathbf{x}\mathbf{y})) \\ &(\mathbf{A}\mathbf{x} \rightarrow \neg \mathbf{B}\mathbf{x}) \land (|\mathbf{B}| = l)) \end{split}$$
(18)

FOMC can be converted to WFOMC by just adding a multiplicative factor $w(\vec{k},\vec{h})$ to every occur-

$$\vec{k},\vec{h})\mapsto w(\vec{k},\vec{h})\in\mathbb{R}^+$$