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PRELIMINARIES: PROBABILITY DISTRIBUTION

X = (Xj, ..., X,,) is a boolean random variable and Pé”) (X)isa
probability distribution
An example of Pﬁf) (X)
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PRELIMINARIES: MARGINAL PROBABILITY DISTRIBUTION

We can obtain a Marginal Distribution on X’ := (X, ... X,) as follows:

PYOLGIX =w)= > PP W)

w/'=w[l:q]
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MUTATIONS IN TRENTINO

Let n be the population of Trentino, such that each person x has a
label i € {1...n}.

Goal: Surveying Trentino for Mutations

There is a genetic mutation M found in the population of Trentino.
Any person, labelled i in Trentino, either has this mutation

(M(i) = 1) or not (M(i) = 0).
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MUTATIONS IN TRENTINO

Let n be the population of Trentino, such that each person x has a
label i € {1...n}.

Goal: Surveying Trentino for Mutations
There is a genetic mutation M found in the population of Trentino.
Any person, labelled i in Trentino, either has this mutation
(M(i) = 1) or not (M(i) = 0).
We want to model the distribution of mutations:
» A parametric probability distribution: Pf,”)
. Give(n) the population of Trentino, we will estimate the parameters
of Py’
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MUTATIONS IN TRENTINO: FORMAL SETUP

We can model the space of possible populations of size n, by:
AM = {0,1}"

If we have w € A™, such that w[i] = 1, then the person with label i
has the mutation M.
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MUTATIONS IN TRENTINO: FORMAL SETUP

We can model the space of possible populations of size n, by:
AM = {0,1}"

If we have w € A™, such that w[i] = 1, then the person with label i
has the mutation M.

A population of 3 people
« A® ={(1,1,1),(1,1,0),(1,0,0), (0,0,0) ...}
- P AG S ]0,1]
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A possible model :

P = () pr

where 6 = {p} and n is the population of Trentino.
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MUTATIONS IN TRENTINO: BINOMIAL DISTRIBUTION

A possible model :

P = () pr

where 6 = {p} and n is the population of Trentino.

Ideally, we observe the entire population of Trentino, say w € A and
get the estimate for p as follows:

p: =argmax P (w)
p
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But we cant survey the entire Trentino. Hence, we survey (observe)
the commune of Trento: w’ ~ A®



Introduction
0008000

MUTATIONS IN TRENTINO: SAMPLING

But we cant survey the entire Trentino. Hence, we survey (observe)
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We estimate Py : A@ — [0,1] given by a Binomial Distribution:
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MUTATIONS IN TRENTINO: SAMPLING

But we cant survey the entire Trentino. Hence, we survey (observe)
the commune of Trento: w’ ~ A®

We estimate Py : A@ — [0,1] given by a Binomial Distribution:
PP = () -prt

pi, =argmax P (W)
p

We have P, but what we wanted was P!
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MUTATIONS IN TRENTINO : GNERALISING

SOLUTION: We just take Pf;” and we plug it's parameters in Pfg’7> lie.

* *
Pn < pq
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PROBABILSITIC CONSISTENCY

After p;; < p;, does our model change it's mind about Trento ?

ie.
Is the marginal probability of w’ under Pé‘” same as Pg” gl ?
ie.

Is the following True ?
PS4l = P

Goob NEws
For Binomial Distribution :
Py | [g) = Py (1)

We call probability distributions with property (1) Projective.
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INFERNCE FROM SUB SAMPLED DOMAINS: FRAMEWORK

Sample : [m] ~ [n]

Learn : 6* < argmax Pg")
0

Generalize : 0* — Pg”)
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DEMOGRAPHICS OF TRENTINO: RELATIONAL CASE

Goal: Modeling Family Influence on Gene Mutation
* A unary predicate M(x) denoting if x has a mutation or not

+ A symmetric and irreflexive relation R(x,y) denoting that x is
relative of y

And the following features:

* fi(x) : M(x)
* fa(x,y) : M(x) AR(x,y) = M(y)
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PROBABILISTIC MODEL: MARKOV LOGIC NETWORK

Given a population w € A, we express a Markov Logic Network as
follows:
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PROBABILISTIC MODEL: MARKOV LOGIC NETWORK

Given a population w € A, we express a Markov Logic Network as
follows:

. 1
PG’ () = 5 x exp(Ni(w)wr + Na(w)ws)

where,

* fi(x) : M(x)

* fa(x,y) : M(x) AR(x,y) — M(y)

* Ni(w) := 32 Lueha

* No(w) := 3 i Lopp i)

* Z=3 eam exP(N1(w)ws + Na(w')ws)
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We cant survey entire Trentino !
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MARKOV LOGIC NETWORKS: SAMPLING

We cant survey entire Trentino ! Hence, we survey Trento ©!
We get our model on Trento Py ©!!

We take the it's parameters 8* and we plug them in Pfg”) ' Hurrah ©!
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MARKOV LoGIC NETWORKS: CONSISTENCY

With respect to the model of Trento i.e. P(j): The Probability of a
Alessandro having the mutation is 0.1
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MARKOV LoGIC NETWORKS: CONSISTENCY

With respect to the model of Trento i.e. P(j): The Probability of a
Alessandro having the mutation is 0.1

But we realise that this probability is 0.9 w.r.t Pfg”) 11q]

What must we believe ??? ©@
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MARKOV LOGIC NETWORKS: PROJECTIVITY

There is no objective way to come out of this situation in general



Projectivity
ooooe

MARKOV LOGIC NETWORKS: PROJECTIVITY

There is no objective way to come out of this situation in general

MLNs (and most models on relational data) are probabilistically
inconsistent i.e. they are not projective !
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“In this work, our goal is to charectierize the set of conditions such
that MLNs are Projective”
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PROJECTIVITY IN MLNSs

“In this work, our goal is to charectierize the set of conditions such
that MLNs are Projective”

As a first step, we provide these conditions for the two variable
fragment i.e. MLN with features involving at most 2 variables
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REVISITING TRENTINO

In Trentino, we had a unary predicate M(c) for every person c. We
had a binary relation R(c,d) for every pair, and we have that R is
symmetric and irreflexive.
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REVISITING TRENTINO

In Trentino, we had a unary predicate M(c) for every person c. We
had a binary relation R(c,d) for every pair, and we have that R is
symmetric and irreflexive.

Hence, we have that:

* For every person ¢, w = M(c) xor w = -M(c
* For every pair of persons (c,d), w = R(c,d) xor w = —R(c, d)
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PARAMETRIC NORMAL FORM MLN

Any Markov Logic Network over the Trentino Example can be
expressed as follows:

* M(x): s
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PARAMETRIC NORMAL FORM MLN

— {c:w E M)

~ e w F ~M()}|
. h}l = [{(c,d) : w = M(x) A M(x) AR(x,x)}|
« h' = |{(c,d) : w = M(x) A M(x) A =R(x,x)}|
« hj? = |{(c,d) : w = M(x) A =M(x) A R(x, x)}|
« h? = |{(c,d) : w = M(x) A =M(x) A =R (x, x)}|
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PARAMETRIC NORMAL FORM MLN

We can create such a parametric form for any MLN

PPw =g x [l er IT I @i

1<i<u 1<i<j<u  1<I<b

20
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NECESSARY AND SUFFICIENT CONDITIONS FOR PROJECTIVITY

An MLN is projective if :

Vi, j: Zw? = Zw;j =35
! !

21
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WHY DOES IT WORK ?

22
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WHY DOES IT WORK ?

If Z(n) = (X;5)" x (S)(), then the MLN reduces to:

Pw=1] 5" I TG @

1<i<u l’ 1<i<j<u  1<I<b

H Pfi H H wijl)l;/

1<i<u  1<i<j<u  1<I<b

It can be easily proven that:

pi = P(c has the i’ property )
wii = P((c,d) has the I"" binary property — c and d have the i and ;")

23
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PROJECTIVITY AND LEARNING

The maximum likelihood estimate is simply:

ok o
Pz*; wul*m
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PROJECTIVITY AND LEARNING

The maximum likelihood estimate is simply:

ok o
Pz*; wul*m

The marginal inference tasks like : P(R(x,y) AR(y,z) — R(x,z)) can
be computed in constant time w.r.t domain cardinality!
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CONCLUSION

Projectively is a gift but it’s also a curse (I guess)!
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