On Projectivity in Markov Logic Netorks

Sagar Malhotra ${ }^{1,2}$ and Luciano Serafini ${ }^{1}$
${ }^{1}$ Fondazione Bruno Kessler
${ }^{2}$ University of Trento

Preliminaries: Probability Distribution

$\boldsymbol{X}=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is a boolean random variable and $P_{\boldsymbol{\theta}}^{(n)}(\boldsymbol{X})$ is a probability distribution

Preliminaries: Probability Distribution

$\boldsymbol{X}=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is a boolean random variable and $P_{\boldsymbol{\theta}}^{(n)}(\boldsymbol{X})$ is a probability distribution
An example of $P_{\boldsymbol{\theta}}^{(3)}(\boldsymbol{X})$

X_{1}	X_{2}	X_{3}	$P_{\theta}^{(3)}(\boldsymbol{X})$
1	1	1	0.1
1	1	0	0.15
1	0	1	0.15
1	0	0	0.1
0	1	1	0.15
0	1	0	0.1
0	0	1	0.1
0	0	0	0.15

Preliminaries: Marginal Probability Distribution

We can obtain a Marginal Distribution on $X^{\prime}:=\left\langle X_{1}, \ldots X_{q}\right\rangle$ as follows:

$$
P_{\theta}^{(n)} \downarrow[q]\left(\boldsymbol{X}^{\prime}=\omega^{\prime}\right):=\sum_{\omega^{\prime}=\omega[1: q]} P_{\theta}^{(n)}(\omega)
$$

X_{1}	X_{2}	X_{3}	$P_{\boldsymbol{\theta}}^{(3)}(\boldsymbol{X})$
1	1	1	0.1
1	1	0	0.15
1	0	1	0.15
1	0	0	0.1
0	1	1	0.15
0	1	0	0.1
0	0	1	0.1
0	0	0	0.15

X_{1}	X_{2}	$P_{\theta}^{(3)} \downarrow[2]\left(X^{\prime}\right)$
1	1	0.25
1	0	0.25
0	1	0.25
0	0	0.25

Mutations in Trentino

Let n be the population of Trentino, such that each person x has a label $i \in\{1 \ldots n\}$.

Goal: Surveying Trentino for Mutations

There is a genetic mutation M found in the population of Trentino.
Any person, labelled i in Trentino, either has this mutation $(M(i)=1)$ or not $(M(i)=0)$.

MUTATIONS IN TRENTINO

Let n be the population of Trentino, such that each person x has a label $i \in\{1 \ldots n\}$.

Goal: Surveying Trentino for Mutations

There is a genetic mutation M found in the population of Trentino.
Any person, labelled i in Trentino, either has this mutation
$(M(i)=1)$ or not ($M(i)=0$).
We want to model the distribution of mutations:

- A parametric probability distribution: $P_{\theta}^{(n)}$
- Given the population of Trentino, we will estimate the parameters of $P_{\boldsymbol{\theta}}^{(n)}$

Mutations in Trentino: Formal Setup

We can model the space of possible populations of size n, by:

$$
\Delta^{(n)}=\{0,1\}^{n}
$$

If we have $\omega \in \Delta^{(n)}$, such that $\omega[i]=1$, then the person with label i has the mutation M.

Mutations in Trentino: Formal Setup

We can model the space of possible populations of size n, by:

$$
\Delta^{(n)}=\{0,1\}^{n}
$$

If we have $\omega \in \Delta^{(n)}$, such that $\omega[i]=1$, then the person with label i has the mutation M.

A population of 3 people

- $\Delta^{(3)}=\{\langle 1,1,1\rangle,\langle 1,1,0\rangle,\langle 1,0,0\rangle,\langle 0,0,0\rangle \ldots\}$
- $P_{\theta}^{(3)}: \Delta^{(3)} \rightarrow[0,1]$

Mutations in Trentino: Binomial Distribution

A possible model :

$$
P_{\boldsymbol{\theta}}^{(n)}(\omega)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

where $\theta=\{p\}$ and n is the population of Trentino.

Mutations in Trentino: Binomial Distribution

A possible model :

$$
P_{\boldsymbol{\theta}}^{(n)}(\omega)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

where $\theta=\{p\}$ and n is the population of Trentino.

Ideally, we observe the entire population of Trentino, say $\omega \in \Delta^{(n)}$ and get the estimate for p as follows:

$$
p_{n}^{*}=\underset{p}{\operatorname{argmax}} P_{\boldsymbol{\theta}}^{(n)}(\omega)
$$

Mutations in Trentino: Sampling

But we cant survey the entire Trentino. Hence, we survey (observe) the commune of Trento: $\omega^{\prime} \sim \Delta^{(q)}$

Mutations in Trentino: Sampling

But we cant survey the entire Trentino. Hence, we survey (observe) the commune of Trento: $\omega^{\prime} \sim \Delta^{(q)}$

We estimate $P_{\theta}^{(q)}: \Delta^{(q)} \rightarrow[0,1]$ given by a Binomial Distribution:

$$
\begin{gathered}
P_{\boldsymbol{\theta}}^{(q)}\left(\omega^{\prime}\right)=\binom{q}{k} p^{k}(1-p)^{q-k} \\
p_{m}^{*}=\underset{p}{\operatorname{argmax}} P_{\boldsymbol{\theta}}^{(q)}\left(\omega^{\prime}\right)
\end{gathered}
$$

Mutations in Trentino: Sampling

But we cant survey the entire Trentino. Hence, we survey (observe) the commune of Trento: $\omega^{\prime} \sim \Delta^{(q)}$

We estimate $P_{\theta}^{(q)}: \Delta^{(q)} \rightarrow[0,1]$ given by a Binomial Distribution:

$$
\begin{gathered}
P_{\boldsymbol{\theta}}^{(q)}\left(\omega^{\prime}\right)=\binom{q}{k} p^{k}(1-p)^{q-k} \\
p_{m}^{*}=\underset{p}{\operatorname{argmax}} P_{\boldsymbol{\theta}}^{(q)}\left(\omega^{\prime}\right)
\end{gathered}
$$

We have $P_{\boldsymbol{\theta}}^{(q)}$, but what we wanted was $P_{\boldsymbol{\theta}}^{(n)}$!

Mutations in Trentino : Gneralising

SOLUTION: We just take $P_{\theta}^{(q)}$ and we plug it's parameters in $P_{\theta}^{(n)}$! i.e.

$$
p_{n}^{*} \leftarrow p_{q}^{*}
$$

Probabilsitic Consistency

After $p_{n}^{*} \leftarrow p_{q}^{*}$, does our model change it's mind about Trento ?

Probabilsitic Consistency

After $p_{n}^{*} \leftarrow p_{q}^{*}$, does our model change it's mind about Trento ? i.e.

Is the marginal probability of ω^{\prime} under $P_{\theta}^{(q)}$ same as $P_{\boldsymbol{\theta}}^{(n)} \downarrow[q]\left(\omega^{\prime}\right)$?

Probabilsitic Consistency

After $p_{n}^{*} \leftarrow p_{q}^{*}$, does our model change it's mind about Trento ? i.e.

Is the marginal probability of ω^{\prime} under $P_{\theta}^{(q)}$ same as $P_{\theta}^{(n)} \downarrow[q]\left(\omega^{\prime}\right)$?
i.e.

Is the following True ?

$$
P_{\boldsymbol{\theta}}^{(n)} \downarrow[q]=P_{\boldsymbol{\theta}}^{(q)}
$$

Probabilsitic Consistency

After $p_{n}^{*} \leftarrow p_{q}^{*}$, does our model change it's mind about Trento ? i.e.

Is the marginal probability of ω^{\prime} under $P_{\theta}^{(q)}$ same as $P_{\theta}^{(n)} \downarrow[q]\left(\omega^{\prime}\right)$?
i.e.

Is the following True ?

$$
P_{\boldsymbol{\theta}}^{(n)} \downarrow[q]=P_{\boldsymbol{\theta}}^{(q)}
$$

Good News

For Binomial Distribution :

$$
\begin{equation*}
P_{\theta}^{(n)} \downarrow[q]=P_{\theta}^{(q)} \tag{1}
\end{equation*}
$$

We call probability distributions with property (1) Projective.

INFERNCE FROM SUB SAMPLED DOMAINS: FRAMEWORK

Sample: $[m] \sim[n]$
Learn : $\boldsymbol{\theta}^{*} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P_{\boldsymbol{\theta}}^{(m)}$
Generalize : $\boldsymbol{\theta}^{*} \rightarrow P_{\boldsymbol{\theta}}^{(n)}$

Demographics of Trentino: Relational Case

Goal: Modeling Family Influence on Gene Mutation

- A unary predicate $M(x)$ denoting if x has a mutation or not
- A symmetric and irreflexive relation $R(x, y)$ denoting that x is relative of y

And the following features:

- $f_{1}(x): M(x)$
- $f_{2}(x, y): M(x) \wedge R(x, y) \rightarrow M(y)$

Probabilistic Model: Markov Logic Network

Given a population $\omega \in \Delta^{(n)}$, we express a Markov Logic Network as follows:

Probabilistic Model: Markov Logic Network

Given a population $\omega \in \Delta^{(n)}$, we express a Markov Logic Network as follows:

$$
P_{\boldsymbol{\theta}}^{(n)}(\omega):=\frac{1}{Z} \times \exp \left(N_{1}(\omega) w_{1}+N_{2}(\omega) w_{2}\right)
$$

where,

- $f_{1}(x): M(x)$
- $f_{2}(x, y): M(x) \wedge R(x, y) \rightarrow M(y)$
- $N_{1}(\omega):=\sum_{i} 1_{\omega \mid=f_{1}(i)}$
- $N_{2}(\omega):=\sum_{i, j} 1_{\omega \mid=f_{2}(i, j)}$
- $Z=\sum_{\omega^{\prime} \in \Delta^{(n)}} \exp \left(N_{1}\left(\omega^{\prime}\right) w_{1}+N_{2}\left(\omega^{\prime}\right) w_{2}\right)$

Markov Logic Networks: Sampling

We cant survey entire Trentino!

Markov Logic Networks: Sampling

We cant survey entire Trentino! Hence, we survey Trento © !

We get our model on Trento $P_{\boldsymbol{\theta}}^{(m)} \odot!!$

Markov Logic Networks: Sampling

We cant survey entire Trentino! Hence, we survey Trento © !

We get our model on Trento $P_{\theta}^{(m)} \oplus!!$

We take the it's parameters $\boldsymbol{\theta}^{*}$ and we plug them in $P_{\boldsymbol{\theta}}^{(n)}$! Hurrah © © !

Markov Logic Networks: Consistency

With respect to the model of Trento i.e. $P_{\theta}^{(q)}$: The Probability of a Alessandro having the mutation is 0.1

Markov Logic Networks: Consistency

With respect to the model of Trento i.e. $P_{\theta}^{(q)}$: The Probability of a Alessandro having the mutation is 0.1

But we realise that this probability is 0.9 w.r.t $P_{\theta}^{(n)} \downarrow[q]$

What must we believe ??? © ©

Markov Logic Networks: Projectivity

There is no objective way to come out of this situation in general

Markov Logic Networks: Projectivity

There is no objective way to come out of this situation in general

MLNs (and most models on relational data) are probabilistically inconsistent i.e. they are not projective !

Projectivity in MLNs

"In this work, our goal is to charectierize the set of conditions such that MLNs are Projective"

Projectivity in MLNs

"In this work, our goal is to charectierize the set of conditions such that MLNs are Projective"

As a first step, we provide these conditions for the two variable fragment i.e. MLN with features involving at most 2 variables

Revisiting Trentino

In Trentino, we had a unary predicate $M(c)$ for every person c. We had a binary relation $R(c, d)$ for every pair, and we have that R is symmetric and irreflexive.

Revisiting Trentino

In Trentino, we had a unary predicate $M(c)$ for every person c. We had a binary relation $R(c, d)$ for every pair, and we have that R is symmetric and irreflexive.

Hence, we have that:

- For every person $c, \omega \models M(c)$ xor $\omega \models \neg M(c)$
- For every pair of persons $(c, d), \omega \models R(c, d)$ xor $\omega \models \neg R(c, d)$

Parametric Normal Form MLN

Any Markov Logic Network over the Trentino Example can be expressed as follows:

- $M(x): s_{1}$
- $\neg M(x): s_{2}$
- $M(x) \wedge M(y) \wedge R(x, y): w_{1}^{11}$
- $M(x) \wedge M(y) \wedge \neg R(x, y): w_{2}^{11}$
- $M(x) \wedge \neg M(y) \wedge R(x, y): w_{1}^{12}$
- $M(x) \wedge \neg M(y) \wedge \neg R(x, y): w_{2}^{12}$
- $\neg M(x) \wedge \neg M(y) \wedge R(x, y): w_{1}^{22}$
- $\neg M(x) \wedge \neg M(y) \wedge \neg R(x, y): w_{2}^{22}$

Parametric Normal Form MLN

$$
P_{\theta}^{(n)}(\omega):=\frac{1}{Z(n)} \times \prod_{1 \leq i \leq 2}\left(s_{i}\right)^{k_{i}} \prod_{1 \leq i \leq j \leq 2} \prod_{1 \leq l \leq 2}\left(w_{l}^{i j}\right)^{h_{l}^{i j}}
$$

- $k_{1}:=|\{c: \omega \models M(x)\}|$
- $k_{2}:=|\{c: \omega \mid=\neg M(x)\}|$
- $h_{1}^{11}:=|\{(c, d): \omega \models M(x) \wedge M(x) \wedge R(x, x)\}|$
- $h_{2}^{11}:=|\{(c, d): \omega \models M(x) \wedge M(x) \wedge \neg R(x, x)\}|$
- $h_{1}^{12}:=|\{(c, d): \omega \models M(x) \wedge \neg M(x) \wedge R(x, x)\}|$
- $h_{2}^{12}:=|\{(c, d): \omega \models M(x) \wedge \neg M(x) \wedge \neg R(x, x)\}|$

Parametric Normal Form MLN

We can create such a parametric form for any MLN

$$
P_{\theta}^{(n)}(\omega):=\frac{1}{Z(n)} \times \prod_{1 \leq i \leq u}\left(s_{i}\right)^{k_{i}} \prod_{1 \leq i \leq j \leq u} \prod_{1 \leq l \leq b}\left(w_{l}^{i j}\right)^{h_{i}^{i j}}
$$

Necessary and Sufficient Conditions for Projectivity

An MLN is projective if :

$$
\forall i, j: \sum_{l} w_{l}^{i j}=\sum_{l} w_{l}^{i j}=S
$$

Why does it work ?

$$
\forall i, j: \sum_{l} w_{l}^{i j}=\sum_{l} w_{l}^{i j} \Longrightarrow Z(n)=\left(\sum_{i} s_{i}\right)^{n} \times(S)^{\binom{n}{2}}
$$

Why does it work ?

If $Z(n)=\left(\sum_{i} s_{i}\right)^{n} \times(S)\left(\begin{array}{c}\binom{n}{2} \text {, then the MLN reduces to: }\end{array}\right.$

$$
\begin{aligned}
P_{\theta}^{(n)}(\omega) & =\prod_{1 \leq i \leq u}\left(\frac{s_{i}}{\sum_{i} s_{i}}\right)^{k_{i}} \prod_{1 \leq i \leq j \leq u} \prod_{1 \leq l \leq b}\left(\frac{w_{l}^{i j}}{S}\right)^{h_{l}^{i j}} \\
& =\prod_{1 \leq i \leq u} p_{i}^{k_{i}} \prod_{1 \leq i \leq j \leq u} \prod_{1 \leq l \leq b}\left(w_{i j l}\right)^{h_{l}^{i j}}
\end{aligned}
$$

It can be easily proven that:
$p_{i}=P\left(c\right.$ has the $i^{t h}$ property $)$
$w_{i j l}=P\left((c, d)\right.$ has the $l^{\text {th }}$ binary property $-c$ and d have the $i^{\text {th }}$ and $\left.j^{t h}\right)$

Projectivity and Learning

The maximum likelihood estimate is simply:

$$
p_{i}=\frac{k_{i}}{n} \quad w_{i j l}=\frac{h_{l}^{i j}}{k_{i} \times k_{j}}
$$

Projectivity and Learning

The maximum likelihood estimate is simply:

$$
p_{i}=\frac{k_{i}}{n} \quad w_{i j l}=\frac{h_{l}^{i j}}{k_{i} \times k_{j}}
$$

The marginal inference tasks like : $P(R(x, y) \wedge R(y, z) \rightarrow R(x, z))$ can be computed in constant time w.r.t domain cardinality!

Conclusion

Projectively is a gift but it's also a curse (I guess)!

