Preliminaries 00	Introduction	Projectivity	Projectivity in MLN
=_<			
			UNIVERSITY OF TRENTO - Italy
FONDAZIONE			Department of Information Engineering and Computer Science

On Projectivity in Markov Logic Netorks

Sagar Malhotra^{1,2} and Luciano Serafini ¹

¹Fondazione Bruno Kessler ²University of Trento

Preliminaries	Introduction	Projectivity	Projectivity in MLN
•0	0000000	00000	0000000000

PRELIMINARIES: PROBABILITY DISTRIBUTION

 $X = \langle X_1, ..., X_n \rangle$ is a boolean random variable and $P_{\theta}^{(n)}(X)$ is a probability distribution

Preliminaries	Introduction	Projectivity	Projectivity in MLN
••	000000	00000	0000000000

PRELIMINARIES: PROBABILITY DISTRIBUTION

 $X = \langle X_1, ..., X_n \rangle$ is a boolean random variable and $P_{\theta}^{(n)}(X)$ is a probability distribution An example of $P_{\theta}^{(3)}(X)$

X_1	X_2	X_3	$P_{\theta}^{(3)}(X)$
1	1	1	0.1
1	1	0	0.15
1	0	1	0.15
1	0	0	0.1
0	1	1	0.15
0	1	0	0.1
0	0	1	0.1
0	0	0	0.15

Preliminaries	Introduction	Projectivity	Projectivity in MLN
	0000000	00000	0000000000

PRELIMINARIES: MARGINAL PROBABILITY DISTRIBUTION

We can obtain a Marginal Distribution on $X' := \langle X_1, \dots, X_q \rangle$ as follows:

$$P_{\boldsymbol{\theta}}^{(n)} \downarrow [q](\mathbf{X}' = \omega') := \sum_{\omega' = \omega[1:q]} P_{\boldsymbol{\theta}}^{(n)}(\omega)$$

X_1	X_2	X_3	$P_{\boldsymbol{\theta}}^{(3)}(\boldsymbol{X})$			
1	1	1	0.1			
1	1	0	0.15	X_1	X_2	$P_{\theta}^{(3)} \downarrow [2](X')$
1	0	1	0.15	1	1	0.25
1	0	0	0.1	1	0	0.25
0	1	1	0.15	0	1	0.25
0	1	0	0.1	0	0	0.25
0	0	1	0.1			
0	0	0	0.15			

Preliminaries	Introduction	Projectivity	Projectivity in MLN
	000000		

MUTATIONS IN TRENTINO

Let *n* be the population of Trentino, such that each person *x* has a label $i \in \{1 \dots n\}$.

Goal: Surveying Trentino for Mutations

There is a genetic mutation M found in the population of Trentino. Any person, labelled i in Trentino, either has this mutation (M(i) = 1) or not (M(i) = 0).

Preliminaries	Introduction	Projectivity	Projectivity in MLN
	000000		

MUTATIONS IN TRENTINO

Let *n* be the population of Trentino, such that each person *x* has a label $i \in \{1 \dots n\}$.

Goal: Surveying Trentino for Mutations

There is a genetic mutation M found in the population of Trentino. Any person, labelled i in Trentino, either has this mutation (M(i) = 1) or not (M(i) = 0).

We want to model the distribution of mutations:

- A parametric probability distribution: $P_{\theta}^{(n)}$
- Given the population of Trentino, we will estimate the parameters of $P_{\theta}^{(n)}$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
	000000		

MUTATIONS IN TRENTINO: FORMAL SETUP

We can model the space of possible populations of size n, by:

 $\Delta^{(n)} = \{0,1\}^n$

If we have $\omega \in \Delta^{(n)}$, such that $\omega[i] = 1$, then the person with label i has the mutation M.

Preliminaries	Introduction	Projectivity	Projectivity in MLN
	000000		

MUTATIONS IN TRENTINO: FORMAL SETUP

We can model the space of possible populations of size n, by:

 $\Delta^{(n)} = \{0,1\}^n$

If we have $\omega \in \Delta^{(n)}$, such that $\omega[i] = 1$, then the person with label i has the mutation M.

A population of 3 people

• $\Delta^{(3)} = \{ \langle 1, 1, 1 \rangle, \langle 1, 1, 0 \rangle, \langle 1, 0, 0 \rangle, \langle 0, 0, 0 \rangle \dots \}$

•
$$P_{\theta}^{(3)}: \Delta^{(3)} \to [0,1]$$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
	000000		

MUTATIONS IN TRENTINO: BINOMIAL DISTRIBUTION

A possible model :

$$P_{\boldsymbol{\theta}}^{(n)}(\omega) = \binom{n}{k} p^k (1-p)^{n-k}$$

where $\theta = \{p\}$ and *n* is the population of Trentino.

Preliminaries	Introduction	Projectivity	Projectivity in MLN
	000000		

MUTATIONS IN TRENTINO: BINOMIAL DISTRIBUTION

A possible model :

$$P_{\boldsymbol{\theta}}^{(n)}(\omega) = \binom{n}{k} p^k (1-p)^{n-k}$$

where $\theta = \{p\}$ and *n* is the population of Trentino.

Ideally, we observe the entire population of Trentino, say $\omega \in \Delta^{(n)}$ and get the estimate for *p* as follows:

$$p_n^* = \underset{p}{\operatorname{argmax}} \quad P_{\theta}^{(n)}(\omega)$$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	0000000000

MUTATIONS IN TRENTINO: SAMPLING

But we cant survey the entire Trentino. Hence, we survey (observe) the commune of Trento: $\omega' \sim \Delta^{(q)}$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	000000	00000	0000000000

MUTATIONS IN TRENTINO: SAMPLING

But we cant survey the entire Trentino. Hence, we survey (observe) the commune of Trento: $\omega' \sim \Delta^{(q)}$

We estimate $P_{\theta}^{(q)} : \Delta^{(q)} \to [0, 1]$ given by a Binomial Distribution:

$$P_{\theta}^{(q)}(\omega') = \binom{q}{k} p^k (1-p)^{q-k}$$
$$p_m^* = \operatorname{argmax} \quad P_{\theta}^{(q)}(\omega')$$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	0000000000

MUTATIONS IN TRENTINO: SAMPLING

But we cant survey the entire Trentino. Hence, we survey (observe) the commune of Trento: $\omega' \sim \Delta^{(q)}$

We estimate $P_{\theta}^{(q)} : \Delta^{(q)} \to [0, 1]$ given by a Binomial Distribution:

$$P_{\theta}^{(q)}(\omega') = {\binom{q}{k}} p^{k} (1-p)^{q-k}$$
$$p_{m}^{*} = \underset{p}{\operatorname{argmax}} \quad P_{\theta}^{(q)}(\omega')$$

We have $P_{\theta}^{(q)}$, but what we wanted was $P_{\theta}^{(n)}$!

Preliminaries	Introduction	Projectivity	Projectivity in MLN
	0000000		

MUTATIONS IN TRENTINO : GNERALISING

SOLUTION: We just take $P_{\theta}^{(q)}$ and we plug it's parameters in $P_{\theta}^{(n)}$! i.e.

$$p_n^* \leftarrow p_q^*$$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	0000000000

After $p_n^* \leftarrow p_q^*$, does our model change it's mind about Trento ?

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	0000000000

After $p_n^* \leftarrow p_q^*$, does our model change it's mind about Trento ? i.e. Is the marginal probability of ω' under $P_{\theta}^{(q)}$ same as $P_{\theta}^{(n)} \downarrow [q](\omega')$?

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	0000000000

After $p_n^* \leftarrow p_q^*$, does our model change it's mind about Trento ? i.e. Is the marginal probability of ω' under $P_{\theta}^{(q)}$ same as $P_{\theta}^{(n)} \downarrow [q](\omega')$? i.e.

Is the following True ?

 $P_{\theta}^{(n)} \downarrow [q] = P_{\theta}^{(q)}$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	0000000000

After $p_n^* \leftarrow p_q^*$, does our model change it's mind about Trento ? i.e. Is the marginal probability of ω' under $P_{\theta}^{(q)}$ same as $P_{\theta}^{(n)} \downarrow [q](\omega')$? i.e. Is the following True ?

 $P_{\theta}^{(n)} \downarrow [q] = P_{\theta}^{(q)}$

GOOD NEWS

For Binomial Distribution :

$$P_{\theta}^{(n)} \downarrow [q] = P_{\theta}^{(q)} \tag{1}$$

We call probability distributions with property (1) Projective.

Preliminaries	Introduction	Projectivity	Projectivity in MLN
	000000		

INFERNCE FROM SUB SAMPLED DOMAINS: FRAMEWORK

$$\begin{split} & \text{Sample}:[m] \sim [n] \\ & \text{Learn}: \boldsymbol{\theta}^* \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \quad P_{\boldsymbol{\theta}}^{(m)} \\ & \text{Generalize}: \boldsymbol{\theta}^* \rightarrow P_{\boldsymbol{\theta}}^{(n)} \end{split}$$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	000000	●0000	0000000000

DEMOGRAPHICS OF TRENTINO: RELATIONAL CASE

Goal: Modeling Family Influence on Gene Mutation

- A unary predicate *M*(*x*) denoting if *x* has a mutation or not
- A symmetric and irreflexive relation *R*(*x*, *y*) denoting that *x* is relative of *y*

And the following features:

- $f_1(x) : M(x)$
- $f_2(x,y): M(x) \wedge R(x,y) \rightarrow M(y)$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
		00000	

PROBABILISTIC MODEL: MARKOV LOGIC NETWORK

Given a population $\omega \in \Delta^{(n)}$, we express a Markov Logic Network as follows:

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	○●○○○	

PROBABILISTIC MODEL: MARKOV LOGIC NETWORK

Given a population $\omega \in \Delta^{(n)}$, we express a Markov Logic Network as follows:

$$P_{\theta}^{(n)}(\omega) := \frac{1}{Z} \times \exp(N_1(\omega)w_1 + N_2(\omega)w_2)$$

where,

- $f_1(x) : M(x)$
- $f_2(x,y): M(x) \wedge R(x,y) \rightarrow M(y)$
- $N_1(\omega) := \sum_i \mathbf{1}_{\omega \models f_1(i)}$
- $N_2(\omega) := \sum_{i,j} \mathbb{1}_{\omega \models f_2(i,j)}$
- $Z = \sum_{\omega' \in \Delta^{(n)}} \exp(N_1(\omega')w_1 + N_2(\omega')w_2)$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	000000	00000	0000000000

MARKOV LOGIC NETWORKS: SAMPLING

We cant survey entire Trentino !

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	000000	00000	0000000000

MARKOV LOGIC NETWORKS: SAMPLING

We cant survey entire Trentino ! Hence, we survey Trento ©!

We get our model on Trento $P_{\theta}^{(m)} \odot !!$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	000000	00000	0000000000

MARKOV LOGIC NETWORKS: SAMPLING

We cant survey entire Trentino ! Hence, we survey Trento ©!

We get our model on Trento $P_{\theta}^{(m)} \odot !!$

We take the it's parameters θ^* and we plug them in $P_{\theta}^{(n)}$! Hurrah \odot !

Preliminaries 00	Introduction	Projectivity	Projectivity in MLN

MARKOV LOGIC NETWORKS: CONSISTENCY

With respect to the model of Trento i.e. $P_{\theta}^{(q)}$: The Probability of a Alessandro having the mutation is 0.1

Preliminaries 00	Introduction	Projectivity	Projectivity in MLN

MARKOV LOGIC NETWORKS: CONSISTENCY

With respect to the model of Trento i.e. $P_{\theta}^{(q)}$: The Probability of a Alessandro having the mutation is 0.1

But we realise that this probability is 0.9 w.r.t $P_{\theta}^{(n)} \downarrow [q]$

What must we believe ??? ©

Preliminaries 00	Introduction	Projectivity 0000●	Projectivity in MLN

MARKOV LOGIC NETWORKS: PROJECTIVITY

There is no objective way to come out of this situation in general

Preliminaries	Introduction	Projectivity	Projectivity in MLN
		00000	

MARKOV LOGIC NETWORKS: PROJECTIVITY

There is no objective way to come out of this situation in general

MLNs (and most models on relational data) are probabilistically inconsistent i.e. they are not projective !

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	●000000000

PROJECTIVITY IN MLNS

"In this work, our goal is to charectierize the set of conditions such that MLNs are *Projective*"

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	•000000000

PROJECTIVITY IN MLNS

"In this work, our goal is to charectierize the set of conditions such that MLNs are *Projective*"

As a first step, we provide these conditions for the two variable fragment i.e. MLN with features involving at most 2 variables

Preliminaries 00	Introduction	Projectivity 00000	Projectivity in MLN

REVISITING TRENTINO

In Trentino, we had a unary predicate M(c) for every person c. We had a binary relation R(c, d) for every pair, and we have that R is symmetric and irreflexive.

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	

REVISITING TRENTINO

In Trentino, we had a unary predicate M(c) for every person c. We had a binary relation R(c, d) for every pair, and we have that R is symmetric and irreflexive.

Hence, we have that:

- For every person c, $\omega \models M(c) \underline{\operatorname{xor}} \omega \models \neg M(c)$
- For every pair of persons (c,d), $\omega \models R(c,d) \underline{\text{xor}} \omega \models \neg R(c,d)$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	000000	00000	000000000

PARAMETRIC NORMAL FORM MLN

Any Markov Logic Network over the Trentino Example can be expressed as follows:

- $M(x) : s_1$
- $\neg M(x) : s_2$
- $M(x) \wedge M(y) \wedge R(x,y)$: w_1^{11}
- $M(x) \wedge M(y) \wedge \neg R(x,y)$: w_2^{11}
- $M(x) \wedge \neg M(y) \wedge R(x,y)$: w_1^{12}
- $M(x) \wedge \neg M(y) \wedge \neg R(x,y)$: w_2^{12}
- $\neg M(x) \land \neg M(y) \land R(x,y)$: w_1^{22}
- $\neg M(x) \land \neg M(y) \land \neg R(x,y)$: w_2^{22}

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	000000	00000	0000000000

PARAMETRIC NORMAL FORM MLN

$$P_{\theta}^{(n)}(\omega) := \frac{1}{Z(n)} \times \prod_{1 \le i \le 2} (s_i)^{k_i} \prod_{1 \le i \le j \le 2} \prod_{1 \le l \le 2} (w_l^{ij})^{h_l^{ij}}$$

•
$$k_1 := |\{c : \omega \models M(x)\}|$$

•
$$k_2 := |\{c : \omega \models \neg M(x)\}|$$

•
$$h_1^{11} := \left| \{ (c,d) : \omega \models M(x) \land M(x) \land R(x,x) \} \right|$$

•
$$h_2^{11} := \left| \{ (c,d) : \omega \models M(x) \land M(x) \land \neg R(x,x) \} \right|$$

•
$$h_1^{12} := \left| \{ (c,d) : \omega \models M(x) \land \neg M(x) \land R(x,x) \} \right|$$

•
$$h_2^{12} := \left| \{ (c,d) : \omega \models M(x) \land \neg M(x) \land \neg R(x,x) \} \right|$$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	

PARAMETRIC NORMAL FORM MLN

We can create such a parametric form for any MLN

$$P_{\theta}^{(n)}(\omega) := \frac{1}{Z(n)} \times \prod_{1 \le i \le u} (s_i)^{k_i} \prod_{1 \le i \le j \le u} \prod_{1 \le l \le b} (w_l^{ij})^{k_l^{ij}}$$

Preliminaries 00	Introduction	Projectivity 00000	Projectivity in MLN

NECESSARY AND SUFFICIENT CONDITIONS FOR PROJECTIVITY

An MLN is projective if :

$$\forall i, j: \sum_{l} w_{l}^{ij} = \sum_{l} w_{l}^{ij} = S$$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	000000	00000	00000000000

WHY DOES IT WORK ?

$$\forall i, j : \sum_{l} w_{l}^{ij} = \sum_{l} w_{l}^{ij} \Longrightarrow Z(n) = \left(\sum_{i} s_{i}\right)^{n} \times \left(S\right)^{\binom{n}{2}}$$

Preliminaries 00	Introduction	Projectivity 00000	Projectivity in MLN

WHY DOES IT WORK ?

If $Z(n) = (\sum_{i} s_i)^n \times (S)^{\binom{n}{2}}$, then the MLN reduces to:

$$\begin{aligned} \mathbf{P}_{\theta}^{(n)}(\omega) &= \prod_{1 \le i \le u} \left(\frac{s_i}{\sum_i s_i}\right)^{k_i} \prod_{1 \le i \le j \le u} \prod_{1 \le l \le b} \left(\frac{w_l^{\eta}}{S}\right)^{h_l^{\eta}} \\ &= \prod_{1 \le i \le u} p_i^{k_i} \prod_{1 \le i \le j \le u} \prod_{1 \le l \le b} \left(w_{ijl}\right)^{h_l^{\eta}} \end{aligned}$$

It can be easily proven that:

 $p_i = P(c \text{ has the } i^{th} \text{ property })$ $w_{ijl} = P((c, d) \text{ has the } l^{th} \text{ binary property } -c \text{ and } d \text{ have the } i^{th} \text{ and } j^{th})$

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	00000000000

PROJECTIVITY AND LEARNING

The maximum likelihood estimate is simply:

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00	0000000	00000	0000000000

PROJECTIVITY AND LEARNING

The maximum likelihood estimate is simply:

$$p_i = \frac{k_i}{n} \qquad \qquad w_{ijl} = \frac{h_l^{ij}}{k_i \times k_j}$$

The marginal inference tasks like : $P(R(x,y) \land R(y,z) \rightarrow R(x,z))$ can be computed in constant time w.r.t domain cardinality!

Preliminaries	Introduction	Projectivity	Projectivity in MLN
00		00000	000000000●
CONCLUSION			

Projectively is a gift but it's also a curse (I guess)!