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Preliminaries Introduction Projectivity Projectivity in MLN

PRELIMINARIES: PROBABILITY DISTRIBUTION

X = 〈X1, ...,Xn〉 is a boolean random variable and P(n)
θ (X) is a

probability distribution

An example of P(3)
θ (X)

X1 X2 X3 P(3)
θ (X)

1 1 1 0.1
1 1 0 0.15
1 0 1 0.15
1 0 0 0.1
0 1 1 0.15
0 1 0 0.1
0 0 1 0.1
0 0 0 0.15
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PRELIMINARIES: MARGINAL PROBABILITY DISTRIBUTION

We can obtain a Marginal Distribution on X′ := 〈X1, . . .Xq〉 as follows:

P(n)
θ ↓ [q](X′ = ω′) :=

∑
ω′=ω[1:q]

P(n)
θ (ω)

X1 X2 X3 P(3)
θ (X)

1 1 1 0.1
1 1 0 0.15
1 0 1 0.15
1 0 0 0.1
0 1 1 0.15
0 1 0 0.1
0 0 1 0.1
0 0 0 0.15

X1 X2 P(3)
θ ↓ [2](X′)

1 1 0.25
1 0 0.25
0 1 0.25
0 0 0.25
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MUTATIONS IN TRENTINO

Let n be the population of Trentino, such that each person x has a
label i ∈ {1 . . . n}.

Goal: Surveying Trentino for Mutations
There is a genetic mutation M found in the population of Trentino.
Any person, labelled i in Trentino, either has this mutation
(M(i) = 1) or not (M(i) = 0).

We want to model the distribution of mutations:

• A parametric probability distribution: P(n)
θ

• Given the population of Trentino, we will estimate the parameters
of P(n)

θ
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MUTATIONS IN TRENTINO: FORMAL SETUP

We can model the space of possible populations of size n, by:

∆(n) = {0, 1}n

If we have ω ∈ ∆(n), such that ω[i] = 1, then the person with label i
has the mutation M.

A population of 3 people

• ∆(3) = {〈1, 1, 1〉, 〈1, 1, 0〉, 〈1, 0, 0〉, 〈0, 0, 0〉 . . . }
• P(3)

θ : ∆(3) → [0, 1]

5



Preliminaries Introduction Projectivity Projectivity in MLN

MUTATIONS IN TRENTINO: FORMAL SETUP

We can model the space of possible populations of size n, by:

∆(n) = {0, 1}n

If we have ω ∈ ∆(n), such that ω[i] = 1, then the person with label i
has the mutation M.

A population of 3 people

• ∆(3) = {〈1, 1, 1〉, 〈1, 1, 0〉, 〈1, 0, 0〉, 〈0, 0, 0〉 . . . }
• P(3)

θ : ∆(3) → [0, 1]

5



Preliminaries Introduction Projectivity Projectivity in MLN

MUTATIONS IN TRENTINO: BINOMIAL DISTRIBUTION

A possible model :

P(n)
θ (ω) =

(
n
k

)
pk(1− p)n−k

where θ = {p} and n is the population of Trentino.

Ideally, we observe the entire population of Trentino, say ω ∈ ∆(n) and
get the estimate for p as follows:

p∗n = argmax
p

P(n)
θ (ω)
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MUTATIONS IN TRENTINO: SAMPLING

But we cant survey the entire Trentino. Hence, we survey (observe)
the commune of Trento: ω′ ∼ ∆(q)

We estimate P(q)
θ : ∆(q) → [0, 1] given by a Binomial Distribution:

P(q)
θ (ω′) =

(
q
k

)
pk(1− p)q−k

p∗m = argmax
p

P(q)
θ (ω′)

We have P(q)
θ , but what we wanted was P(n)

θ !
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MUTATIONS IN TRENTINO : GNERALISING

SOLUTION: We just take P(q)
θ and we plug it’s parameters in P(n)

θ ! i.e.

p∗n ← p∗q
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PROBABILSITIC CONSISTENCY

After p∗n ← p∗q , does our model change it’s mind about Trento ?

i.e.
Is the marginal probability of ω′ under P(q)

θ same as P(n)
θ ↓ [q](ω′) ?

i.e.
Is the following True ?

P(n)
θ ↓ [q] = P(q)

θ

GOOD NEWS

For Binomial Distribution :

P(n)
θ ↓ [q] = P(q)

θ (1)

We call probability distributions with property (1) Projective.
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INFERNCE FROM SUB SAMPLED DOMAINS: FRAMEWORK

Sample : [m] ∼ [n]

Learn : θ∗ ← argmax
θ

P(m)
θ

Generalize : θ∗ → P(n)
θ
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DEMOGRAPHICS OF TRENTINO: RELATIONAL CASE

Goal: Modeling Family Influence on Gene Mutation

• A unary predicate M(x) denoting if x has a mutation or not

• A symmetric and irreflexive relation R(x, y) denoting that x is
relative of y

And the following features:

• f1(x) : M(x)

• f2(x, y) : M(x) ∧ R(x, y)→M(y)
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PROBABILISTIC MODEL: MARKOV LOGIC NETWORK

Given a population ω ∈ ∆(n), we express a Markov Logic Network as
follows:

P(n)
θ (ω) :=

1
Z
× exp(N1(ω)w1 + N2(ω)w2)

where,

• f1(x) : M(x)

• f2(x, y) : M(x) ∧ R(x, y)→M(y)

• N1(ω) :=
∑

i 1ω|=f1(i)

• N2(ω) :=
∑

i,j 1ω|=f2(i,j)

• Z =
∑
ω′∈∆(n) exp(N1(ω′)w1 + N2(ω′)w2)
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MARKOV LOGIC NETWORKS: SAMPLING

We cant survey entire Trentino !

Hence, we survey Trento ,!

We get our model on Trento P(m)
θ ,!!

We take the it’s parameters θ∗ and we plug them in P(n)
θ ! Hurrah ,!
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MARKOV LOGIC NETWORKS: CONSISTENCY

With respect to the model of Trento i.e. P(q)
θ : The Probability of a

Alessandro having the mutation is 0.1

But we realise that this probability is 0.9 w.r.t P(n)
θ ↓ [q]

What must we believe ??? /
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MARKOV LOGIC NETWORKS: PROJECTIVITY

There is no objective way to come out of this situation in general

MLNs (and most models on relational data) are probabilistically
inconsistent i.e. they are not projective !
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PROJECTIVITY IN MLNS

“In this work, our goal is to charectierize the set of conditions such
that MLNs are Projective”

As a first step, we provide these conditions for the two variable
fragment i.e. MLN with features involving at most 2 variables
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REVISITING TRENTINO

In Trentino, we had a unary predicate M(c) for every person c. We
had a binary relation R(c, d) for every pair, and we have that R is
symmetric and irreflexive.

Hence, we have that:

• For every person c, ω |= M(c) xor ω |= ¬M(c)

• For every pair of persons (c, d), ω |= R(c, d) xor ω |= ¬R(c, d)
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PARAMETRIC NORMAL FORM MLN

Any Markov Logic Network over the Trentino Example can be
expressed as follows:

• M(x) : s1

• ¬M(x) : s2

• M(x) ∧M(y) ∧ R(x, y): w11
1

• M(x) ∧M(y) ∧ ¬R(x, y): w11
2

• M(x) ∧ ¬M(y) ∧ R(x, y): w12
1

• M(x) ∧ ¬M(y) ∧ ¬R(x, y): w12
2

• ¬M(x) ∧ ¬M(y) ∧ R(x, y): w22
1

• ¬M(x) ∧ ¬M(y) ∧ ¬R(x, y): w22
2
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PARAMETRIC NORMAL FORM MLN

P(n)
θ (ω) :=

1
Z(n)

×
∏

1≤i≤2

(si)
ki
∏

1≤i≤j≤2

∏
1≤l≤2

(wij
l )hij

l

• k1 :=
∣∣{c : ω |= M(x)}

∣∣
• k2 :=

∣∣{c : ω |= ¬M(x)}
∣∣

• h11
1 :=

∣∣{(c, d) : ω |= M(x) ∧M(x) ∧ R(x, x)}
∣∣

• h11
2 :=

∣∣{(c, d) : ω |= M(x) ∧M(x) ∧ ¬R(x, x)}
∣∣

• h12
1 :=

∣∣{(c, d) : ω |= M(x) ∧ ¬M(x) ∧ R(x, x)}
∣∣

• h12
2 :=

∣∣{(c, d) : ω |= M(x) ∧ ¬M(x) ∧ ¬R(x, x)}
∣∣

...
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PARAMETRIC NORMAL FORM MLN

We can create such a parametric form for any MLN

P(n)
θ (ω) :=

1
Z(n)

×
∏

1≤i≤u

(si)
ki
∏

1≤i≤j≤u

∏
1≤l≤b

(wij
l )hij

l
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NECESSARY AND SUFFICIENT CONDITIONS FOR PROJECTIVITY

An MLN is projective if :

∀i, j :
∑

l

wij
l =

∑
l

wij
l = S

21
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WHY DOES IT WORK ?

∀i, j :
∑

l

wij
l =

∑
l

wij
l =⇒ Z(n) = (

∑
i

si)
n × (S)(

n
2)

22
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WHY DOES IT WORK ?

If Z(n) = (
∑

i si)
n × (S)(

n
2), then the MLN reduces to:

P(n)
θ (ω) =

∏
1≤i≤u

( si∑
i si

)ki
∏

1≤i≤j≤u

∏
1≤l≤b

(
wij

l
S

)hij
l

=
∏

1≤i≤u

pki
i

∏
1≤i≤j≤u

∏
1≤l≤b

(wijl)
hij

l

It can be easily proven that:

pi = P(c has the ith property )

wijl = P((c, d) has the lth binary property — c and d have the ith and jth)

23
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PROJECTIVITY AND LEARNING

The maximum likelihood estimate is simply:

pi =
ki

n
wijl =

hij
l

ki × kj

The marginal inference tasks like : P(R(x, y) ∧ R(y, z)→ R(x, z)) can
be computed in constant time w.r.t domain cardinality!
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CONCLUSION

Projectively is a gift but it’s also a curse (I guess)!
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