Weighted Model Counting in the Two Variable Fragments

AAAI 2022 @ FBK

Sagar Malhotra ${ }^{1,2}$ and Luciano Serafini ${ }^{1}$
${ }^{1}$ Fondazione Bruno Kessler
${ }^{2}$ University of Trento

Model Counting

Given a logical formula Φ. e.g.

> Trentino \rightarrow Climber
> MC ?

Model Counting

Given a logical formula Φ. e.g.

$$
\begin{gathered}
\text { Trentino } \rightarrow \text { Climber } \\
\text { MC ? }
\end{gathered}
$$

Trentino	Climber	Trentino \rightarrow Climber
1	1	1
1	0	0
0	1	1
0	0	1

$$
M C=3
$$

Weighted Model Counting

Given a logical formula Φ. e.g.

$$
\text { Trentino } \rightarrow \text { Climber }
$$

And a weight function e.g.

$$
\begin{array}{lr}
w(\text { Trentino })=2.5 & w(\neg \text { Trentino })=5 \\
w(\text { Climber })=0.5 & w(\neg \text { Climber })=1.5
\end{array}
$$

WMC ?

Weighted Model Counting

Given a logical formula Φ. e.g.

$$
\text { Trentino } \rightarrow \text { Climber }
$$

And a weight function e.g.

$$
\begin{array}{lr}
w(\text { Trentino })=2.5 & w(\neg \text { Trentino })=5 \\
w(\text { Climber })=0.5 & w(\neg \text { Climber })=1.5
\end{array}
$$

WMC ?

Trentino	Climber	Trentino \rightarrow Climber
1	1	$2.5 \times 0.5=1.25$
1	0	$2.5 \times 1.5=1.25$
0	1	$5 \times 0.5=1.5$
0	0	$5 \times 1.5=7.5$

$$
W M C=11.25
$$

WMC Applications

Weighted Model Counting: Approaches

- Devising heuristic/approximation algorithms WMC is intractable!

Weighted Model Counting: Approaches

- Devising heuristic/approximation algorithms WMC is intractable!
- Identifying logical languages that admit efficient WMC Today's presentation

Weighted First Order Model Counting

$$
\forall x \text {.Trentino }(x) \rightarrow \text { Climber }(x)
$$

A weight function associated to predicates:

$$
\begin{array}{lr}
w(\text { Trentino })=2.5 & w(\neg \text { Trentino })=5 \\
w(\text { Climber })=0.5 & w(\neg \text { Climber })=1.5
\end{array}
$$

What is the WFOMC for n people ?

Weighted First Order Model Counting

$$
\forall x \text {.Trentino }(x) \rightarrow \text { Climber }(x)
$$

A weight function associated to predicates:

$$
\begin{array}{lr}
w(\text { Trentino })=2.5 & w(\neg \text { Trentino })=5 \\
w(\text { Climber })=0.5 & w(\neg \text { Climber })=1.5
\end{array}
$$

What is the WFOMC for n people ?

Can we compute it in PTIME?

Weighted First Order Model Counting

$$
\forall x \text {.Trentino }(x) \rightarrow \text { Climber }(x)
$$

A weight function associated to predicates:

$$
\begin{array}{lr}
w(\text { Trentino })=2.5 & w(\neg \text { Trentino })=5 \\
w(\text { Climber })=0.5 & w(\neg \text { Climber })=1.5
\end{array}
$$

What is the WFOMC for n people ?

Can we compute it in PTIME?

Can we get a closed form formula ?

FOMC in the two variable fragment

FO² Language: 1-Types

We have a language with at most two variables, with the following predicates:

- A unary predicate $\operatorname{FBK}(\mathrm{x})$
- A binary predicate Shaves (x, y)

FO² Language: 1-Types

We have a language with at most two variables, with the following predicates:

- A unary predicate $\operatorname{FBK}(\mathrm{x})$
- A binary predicate Shaves(x, y)

We have the following set of unary properties also called 1-types:

$$
\begin{gathered}
\neg \operatorname{FBK}(\mathrm{c}) \wedge \neg \operatorname{Shaves}(\mathrm{c}, \mathrm{c}) \\
\neg \operatorname{FBK}(\mathrm{c}) \wedge \text { Shaves }(\mathrm{c}, \mathrm{c}) \\
\mathrm{FBK}(\mathrm{c}) \wedge \neg \operatorname{Shaves}(\mathrm{c}, \mathrm{c}) \\
\mathrm{FBK}(\mathrm{c}) \wedge \text { Shaves }(\mathrm{c}, \mathrm{c})
\end{gathered}
$$

1- Type Enumeration

An arrangement of 1-Types

$$
k_{1}=1 \quad k_{2}=2 \quad k_{3}=1 \quad k_{4}=2
$$

2- Table Enumeration

Another arrangement with the same 1-Type cardinalities

2- Table Enumeration

Another arrangement with the same 1-Type cardinalities

$$
k_{1}=1 \quad k_{2}=2 \quad k_{3}=1 \quad k_{4}=2
$$

\#Similar Arrangements $=\binom{n}{k_{1}, k_{2}, k_{3}, k_{4}}=\frac{6!}{1!2!1!2!}=180$

FO² Language: 2-tables

We have an FO^{2} language, with the following predicates:

- A unary predicate $\operatorname{FBK}(\mathrm{x})$
- A binary predicate Shaves(x,y)

We have the following set binary properties also called 2-tables:

$$
\begin{gathered}
\operatorname{Shaves}(c, d) \wedge \operatorname{Shaves}(d, c) \\
\neg \operatorname{Shaves}(c, d) \wedge \operatorname{Shaves}(d, c) \\
\operatorname{Shaves}(c, d) \wedge \neg \operatorname{Shaves}(d, c) \\
\neg \operatorname{Shaves}(c, d) \wedge \neg \operatorname{Shaves}(d, c)
\end{gathered}
$$

2- Table Enumeration

An arrangement for 2-tables

2- Table Enumeration given 1-Types

An arrangement for 2-tables given 1-types

2- Table Enumeration given 1-Types

Picking a sub graph: Pick a pair of 1-Types

2- Table Enumeration given 1-Types

Picking a sub graph: Pick 2-Tables between them

2- Table Enumeration

Enumerating 2-tables given 1-types

$$
\begin{aligned}
& k_{2}=2
\end{aligned} \quad k_{4}=201 \quad h_{4}=0
$$

2- Table Enumeration

Enumerating 2-tables given 1-types

$$
\left.\begin{array}{c}
k_{2}=2 \quad k_{4}=2 \\
h_{1}=2 \quad h_{2}=1 \quad h_{3}=1 \quad h_{4}=0 \\
\left(\begin{array}{ccc}
& k_{2} \times & k_{4} \\
h_{1} & h_{2} & h_{3}
\end{array} \quad h_{4}\right.
\end{array}\right)=\frac{(2 \times 2)!}{2!2!1!0!}=68
$$

Enumerating all models over 1-types and 2-tables

$$
\begin{gathered}
\sum_{\vec{k}, \vec{h}}\binom{n}{k_{1} \ldots k_{u}} \prod_{1 \leq i \leq j \leq u}\binom{k(i, j)}{h_{1}^{i j} \ldots h_{b}^{i j}} \\
\boldsymbol{k}(i, j)= \begin{cases}k_{i} k_{j} & \text { if } i \neq j \\
\frac{k_{i}\left(k_{i}-1\right)}{2} & \text { if } i=j\end{cases}
\end{gathered}
$$

Adding Formulas : $\forall x y . \Phi(x, y)$

A formula $\forall x y . \Phi(x, y)$, allows some and disallows other 1-Type and 2-Table configuration. For Example:

$$
\begin{aligned}
& \neg \operatorname{Shaves}(x, x) \\
& \operatorname{Shaves}(x, y) \rightarrow \operatorname{Shaves}(y, x) \\
& \operatorname{FBK}(x) \wedge \operatorname{Shaves}(x, y) \rightarrow \operatorname{FBK}(y)
\end{aligned}
$$

Adding Formulas : $\forall x y . \Phi(x, y)$

\neg Shaves (x, x)
$\operatorname{Shaves}(\mathrm{x}, \mathrm{y}) \rightarrow \operatorname{Shaves}(\mathrm{y}, \mathrm{x})$
$\operatorname{FBK}(\mathrm{x}) \wedge$ Shaves $(\mathrm{x}, \mathrm{y}) \rightarrow \operatorname{FBK}(\mathrm{y})$

Not allowed:

$$
\neg \mathrm{FBK}(\mathrm{c}) \wedge \neg \operatorname{Sh}(\mathrm{c}, \mathrm{c}) \wedge \mathrm{FBK}(\mathrm{~d}) \wedge \neg \operatorname{Sh}(\mathrm{d}, \mathrm{~d}) \wedge \operatorname{Sh}(\mathrm{c}, \mathrm{~d}) \wedge \operatorname{Sh}(\mathrm{d}, \mathrm{c})
$$

Allowed:

$$
\operatorname{FBK}(\mathrm{c}) \wedge \neg \operatorname{Sh}(\mathrm{c}, \mathrm{c}) \wedge \operatorname{FBK}(\mathrm{d}) \wedge \neg \operatorname{Sh}(\mathrm{d}, \mathrm{~d}) \wedge \operatorname{Sh}(\mathrm{c}, \mathrm{~d}) \wedge \operatorname{Sh}(\mathrm{d}, \mathrm{c})
$$

FOMC in $\mathrm{FO}^{2}: ~ \forall x \forall y . \Phi(x, y)$

$$
\begin{aligned}
& \qquad \operatorname{FOMC}(\Phi, n)= \\
& \sum_{\vec{k}, \vec{h}}\binom{n}{k_{1}, \ldots, k_{u}} \prod_{1 \leq i \leq j \leq u}\binom{k(i, j)}{h_{1}^{i j}, \ldots, h_{b}^{i j}} \prod_{1 \leq v \leq b} n_{i j v}^{h_{v}^{i j}} \\
& \text { Unary Properties } \quad \text { Constraints: } \Phi
\end{aligned} \quad \text { Binary Properties } \quad .
$$

Generalisations

1. Existential Quantifiers: $\forall x \exists y$.Shaves(x, y)

- Key Idea: Principle of Inclusion Exclusion

Generalisations

1. Existential Quantifiers: $\forall x \exists y$.Shaves(x, y)

- Key Idea: Principle of Inclusion Exclusion

2. Cardinality Constraints: \mid Shaves $\mid \geq 10$

- Key Idea: Count only the k and h such that the cardinality is restricted

Generalisations

1. Existential Quantifiers: $\forall x \exists y$.Shaves(x, y)

- Key Idea: Principle of Inclusion Exclusion

2. Cardinality Constraints: \mid Shaves $\mid \geq 10$

- Key Idea: Count only the k and h such that the cardinality is restricted

3. Counting Quantifiers: $\forall \mathrm{x} \exists \geq^{5} \mathrm{y}$.Shaves (x, y)

- Key Idea: Any such formula is reducible to a formula with cardinality constraints and existential quantifiers

Applications

- Learning and inference in relational models: Exponential Random Graphs, Probabilistic Logic, Probabilistic Databases etc.

Applications

- Learning and inference in relational models: Exponential Random Graphs, Probabilistic Logic, Probabilistic Databases etc.
- Network Reliability Testing: First Order Counters can serve as simulation set up for testing propositional model counters

Applications

- Learning and inference in relational models: Exponential Random Graphs, Probabilistic Logic, Probabilistic Databases etc.
- Network Reliability Testing: First Order Counters can serve as simulation set up for testing propositional model counters
- Software Verification: AlloyMC, already a higher order language.

Conclusion

> Weighted Model Counting is an assembly language to a vast array of problems.

Conclusion

> Weighted Model Counting is an assembly language to a vast array of problems.

Only first-order logic fragments have ever been shown to admit exact tractable counting.

Conclusion

Weighted Model Counting is an assembly language to a vast array of problems.

Only first-order logic fragments have ever been shown to admit exact tractable counting.

In this work, we expand the fragments admitting tractable counting and provide a combinatorial framework that admits closed form formulae.

Future Works

- Consistency of probabilistic inference [Preprint Online]
- Approximate counting with guarantees

