Introduction 00000 Applications

UNIVERSITY OF TRENTO - Italy Department of Information Engineering and Computer Science

Weighted Model Counting in the Two Variable Fragments

AAAI 2022 @ FBK

Sagar Malhotra^{1,2} and Luciano Serafini ¹

¹Fondazione Bruno Kessler ²University of Trento

Introduction	FOMC in the two variable fragment	Applications	Conclusion
●0000		O	000

Model Counting

Given a logical formula $\Phi.\,$ e.g.

 $\mathsf{Trentino} \to \mathsf{Climber}$

MC ?

Introduction	FOMC in the two variable fragment	Applications	Conclusion
•0000			

Model Counting

Given a logical formula $\Phi.\,$ e.g.

 $\mathsf{Trentino} \to \mathsf{Climber}$

MC ?

Trentino	Climber	$Trentino \to Climber$
1	1	1
1	0	0
0	1	1
0	0	1

MC = 3

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000	0000000000000	0	000

Weighted Model Counting

Given a logical formula $\Phi.\,$ e.g.

 $\mathsf{Trentino} \to \mathsf{Climber}$

And a weight function e.g.

w(Trentino) = 2.5 $w(\neg\text{Trentino}) = 5$ w(Climber) = 0.5 $w(\neg\text{Climber}) = 1.5$

WMC?

Introduction	FOMC in the two variable fragment	Applications	
0000			

Weighted Model Counting

Given a logical formula $\Phi.\,$ e.g.

 $\mathsf{Trentino} \to \mathsf{Climber}$

And a weight function e.g.

 $w({\sf Trentino}) = 2.5 \qquad \qquad w(\neg {\sf Trentino}) = 5 \\ w({\sf Climber}) = 0.5 \qquad \qquad w(\neg {\sf Climber}) = 1.5 \\ \end{array}$

WMC?

Trentino	Climber	$Trentino \to Climber$
1	1	$2.5 \times 0.5 = 1.25$
1	0	$2.5 \times 1.5 = 1.25$
0	1	$5 \times 0.5 = 1.5$
0	0	$5 \times 1.5 = 7.5$

WMC = 11.25

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000			

WMC Applications

Introduction	FOMC in the two variable fragment	Applications	
00000	0000000000000		000

Weighted Model Counting: Approaches

Devising heuristic/approximation algorithms
 WMC is intractable !

Introduction	FOMC in the two variable fragment	Applications	
00000	0000000000000		000

Weighted Model Counting: Approaches

- Devising heuristic/approximation algorithms
 WMC is intractable !
- Identifying logical languages that admit efficient WMC Today's presentation

Introduction	FOMC in the two variable fragment	Applications	
00000	0000000000000		000

Weighted First Order Model Counting

 $\forall x. \mathsf{Trentino}(x) \rightarrow \mathsf{Climber}(x)$

A weight function associated to predicates:

w(Trentino) = 2.5 $w(\neg \text{Trentino}) = 5$ w(Climber) = 0.5 $w(\neg \text{Climber}) = 1.5$

What is the WFOMC for n people ?

	Introduction	FOMC in the two variable fragment	Applications	
0000 00000000000000 0 000	00000	0000000000000	0	000

Weighted First Order Model Counting

 $\forall x. \operatorname{Trentino}(x) \rightarrow \operatorname{Climber}(x)$

A weight function associated to predicates:

w(Trentino) = 2.5 $w(\neg \text{Trentino}) = 5$ w(Climber) = 0.5 $w(\neg \text{Climber}) = 1.5$

What is the WFOMC for n people ?

Can we compute it in PTIME?

	Introduction	FOMC in the two variable fragment	Applications	
0000 00000000000000 0 000	00000	0000000000000	0	000

Weighted First Order Model Counting

 $\forall x. \mathsf{Trentino}(x) \rightarrow \mathsf{Climber}(x)$

A weight function associated to predicates:

w(Trentino) = 2.5 $w(\neg \text{Trentino}) = 5$ w(Climber) = 0.5 $w(\neg \text{Climber}) = 1.5$

What is the WFOMC for n people ?

Can we compute it in PTIME?

Can we get a closed form formula ?

FOMC in the two variable fragment

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000	0●0000000000000	O	000

FO² Language: 1-Types

We have a language with at most two variables, with the following predicates:

- A unary predicate FBK(x)
- A binary predicate Shaves(x, y)

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000	000000000000000	O	000

FO² Language: 1-Types

We have a language with **at most two variables**, with the following predicates:

- A unary predicate FBK(x)
- A binary predicate Shaves(x, y)

We have the following set of unary properties also called 1-types:

 $\neg FBK(c) \land \neg Shaves(c, c)$ $\neg FBK(c) \land Shaves(c, c)$ $FBK(c) \land \neg Shaves(c, c)$ $FBK(c) \land Shaves(c, c)$

	FOMC in the two variable fragment	Applications	Conclusion
00000	0000000000000		000

1- Type Enumeration

An arrangement of 1-Types

	FOMC in the two variable fragment	Applications	
00000	0000000000000		000

2- Table Enumeration

Another arrangement with the same 1-Type cardinalities

	FOMC in the two variable fragment	Applications	
00000	0000000000000		000

2- Table Enumeration

Another arrangement with the same 1-Type cardinalities

#Similar Arrangements =
$$\binom{n}{k_1, k_2, k_3, k_4} = \frac{6!}{1!2!1!2!} = 180$$

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000		O	000
FO ² Language:	2-tables		

We have an FO^2 language, with the following predicates:

- A unary predicate FBK(x)
- A binary predicate Shaves(x, y)

We have the following set binary properties also called 2-tables:

$$\begin{split} & \text{Shaves}(c,d) \land \text{Shaves}(d,c) \\ \neg & \text{Shaves}(c,d) \land \text{Shaves}(d,c) \\ & \text{Shaves}(c,d) \land \neg & \text{Shaves}(d,c) \\ \neg & \text{Shaves}(c,d) \land \neg & \text{Shaves}(d,c) \end{split}$$

	FOMC in the two variable fragment	Applications	
00000	000000000000	0	000

2- Table Enumeration

An arrangement for 2-tables

Applications Conclu O 000

2- Table Enumeration given 1-Types

An arrangement for 2-tables given 1-types

FOMC in the two variable fragment	Applications	
0000000000000		

2- Table Enumeration given 1-Types

Picking a sub graph: Pick a pair of 1-Types

FOMC in the two variable fragment	Applications	
0000000000000		

2- Table Enumeration given 1-Types

Picking a sub graph: Pick 2-Tables between them

	FOMC in the two variable fragment	Applications	
00000	0000000000000		000

2- Table Enumeration

Enumerating 2-tables given 1-types

	FOMC in the two variable fragment	Applications	
00000	0000000000000		000

2- Table Enumeration

Enumerating 2-tables given 1-types

	FOMC in the two variable fragment	Applications	
00000	000000000000000		000

Enumerating all models over 1-types and 2-tables

$$\sum_{\vec{k},\vec{h}} \binom{n}{k_1 \dots k_u} \prod_{1 \le i \le j \le u} \binom{k(i,j)}{h_1^{ij} \dots h_b^{ij}}$$
$$\boldsymbol{k}(i,j) = \begin{cases} k_i k_j & \text{if } i \ne j \\ \frac{k_i(k_i-1)}{2} & \text{if } i = j \end{cases}$$

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000	0000000000000000	O	000
Adding Formula	as : $\forall xy. \Phi(x,y)$		

A formula $\forall xy.\Phi(x,y)$, allows some and disallows other 1-Type and 2-Table configuration. For Example:

$$\label{eq:shaves} \begin{split} \neg Shaves(\mathbf{x},\mathbf{x}) \\ Shaves(\mathbf{x},\mathbf{y}) & \rightarrow Shaves(\mathbf{y},\mathbf{x}) \\ FBK(\mathbf{x}) \land Shaves(\mathbf{x},\mathbf{y}) & \rightarrow FBK(\mathbf{y}) \end{split}$$

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000	00000000000000000	O	

Adding Formulas : $\forall xy.\Phi(x,y)$

$$\label{eq:shaves} \begin{split} \neg Shaves(x,x) \\ Shaves(x,y) & \rightarrow Shaves(y,x) \\ FBK(x) \wedge Shaves(x,y) & \rightarrow FBK(y) \end{split}$$

Not allowed:

 $\neg FBK(c) \land \neg Sh(c,c) \land FBK(d) \land \neg Sh(d,d) \land Sh(c,d) \land Sh(d,c)$

Allowed:

 $\texttt{FBK}(\texttt{c}) \land \lnot\texttt{Sh}(\texttt{c},\texttt{c}) \land \texttt{FBK}(\texttt{d}) \land \lnot\texttt{Sh}(\texttt{d},\texttt{d}) \land \texttt{Sh}(\texttt{c},\texttt{d}) \land \texttt{Sh}(\texttt{d},\texttt{c})$

	FOMC in the two variable fragment	Applications	
00000	00000000000000	0	000

FOMC in FO²: $\forall x \forall y . \Phi(x, y)$

 $FOMC(\Phi, n) =$

$$\sum_{\boldsymbol{\vec{k}},\boldsymbol{\vec{h}}} \binom{\boldsymbol{n}}{\boldsymbol{k_1},...,\boldsymbol{k_u}} \prod_{1 \le i \le j \le u} \binom{\boldsymbol{k}(i,j)}{\boldsymbol{h}_1^{ij},...,\boldsymbol{h}_b^{ij}} \prod_{1 \le v \le b} n_{ijv} \boldsymbol{h}_v^{ij}$$

Unary Properties

Constraints: Φ

Binary Properties

FOMC in the two variable fragment	Applications	
0000000000000		

Generalisations

1. Existential Quantifiers: $\forall \mathtt{x} \exists \mathtt{y}.\mathtt{Shaves}(\mathtt{x}, \mathtt{y})$

Key Idea: Principle of Inclusion Exclusion

FOMC in the two variable fragment	Applications	
0000000000000		

Generalisations

- 1. Existential Quantifiers: $\forall x \exists y.Shaves(x, y)$
 - Key Idea: Principle of Inclusion Exclusion

2. Cardinality Constraints: $|Shaves| \ge 10$

• Key Idea: Count only the *k* and *h* such that the cardinality is restricted

	FOMC in the two variable fragment	Applications	
00000	0000000000000		000

Generalisations

- 1. Existential Quantifiers: $\forall x \exists y.Shaves(x, y)$
 - Key Idea: Principle of Inclusion Exclusion
- 2. Cardinality Constraints: $|Shaves| \ge 10$
 - Key Idea: Count only the $k \mbox{ and } h$ such that the cardinality is restricted
- 3. Counting Quantifiers: $\forall x \exists \geq 5 y. Shaves(x, y)$
 - Key Idea: Any such formula is reducible to a formula with cardinality constraints and existential quantifiers

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000		•	000
Applications			

• Learning and inference in relational models: Exponential Random Graphs, Probabilistic Logic, Probabilistic Databases etc.

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000		•	000

Applications

- Learning and inference in relational models: Exponential Random Graphs, Probabilistic Logic, Probabilistic Databases etc.
- Network Reliability Testing: First Order Counters can serve as simulation set up for testing propositional model counters

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000		•	000

Applications

- Learning and inference in relational models: Exponential Random Graphs, Probabilistic Logic, Probabilistic Databases etc.
- Network Reliability Testing: First Order Counters can serve as simulation set up for testing propositional model counters
- Software Verification: AlloyMC, already a higher order language.

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000		O	●00

Conclusion

Weighted Model Counting is an assembly language to a vast array of problems.

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000		O	●OO

Conclusion

Weighted Model Counting is an assembly language to a vast array of problems.

Only first-order logic fragments have ever been shown to admit exact tractable counting.

Introduction 00000	FOMC in the two variable fragment	Applications O	Conclusion

Conclusion

Weighted Model Counting is an assembly language to a vast array of problems.

Only first-order logic fragments have ever been shown to admit exact tractable counting.

In this work, we expand the fragments admitting tractable counting and provide a combinatorial framework that admits closed form formulae.

Introduction	FOMC in the two variable fragment	Applications	Conclusion
00000	000000000000000	O	

Future Works

- Consistency of probabilistic inference [Preprint Online]
- Approximate counting with guarantees

	FOMC in the two variable fragment	Applications	Conclusion
00000	0000000000000		000

Thank You !