

Weighted Model Counting in the Two **Variable Fragments**

AAAI 2022

Sagar Malhotra^{1,2} and Luciano Serafini ¹

¹Fondazione Bruno Kessler ²University of Trento

Probabilistic Inference ↔ Weighted Model Counting

• Weight Function w over a set of worlds Ω :

$$w: \Omega \to \mathbb{R}^+ \tag{1}$$

• Probability of a world $\omega \in \Omega$:

$$P(\omega) = \frac{w(\omega)}{\sum_{\omega' \in \Omega} w(\omega')}$$
 (2)

• Probability of a logical formula Φ :

$$P(\Phi) = \frac{\sum_{\omega \models \Phi} w(\omega)}{\sum_{\omega' \in \Omega} w(\omega')}$$
 (3)

Weighted First Order Model Counting

$$WFOMC(\Phi, n) = \sum_{\omega \models \Phi} w(\omega)$$
 (4)

- Φ is a **First Order Logic** formula, n is the domain cardinality
- w is independent of the domain elements

GOAL: Identifying **Analytical formulas** for **PTIME** WFOMC

FOMC in FO^2

FO²: An Example

Example: Undirected Graphs

All simple undirected graphs can be interpreted as models of the following FO^2 formula:

$$\Phi = \forall xy. \neg R(x, x) \land (R(x, y) \rightarrow R(y, x))$$
 (5)

where the domain Δ is the set of nodes.

Problem: How many undirected graphs exist over n nodes?

FOMC($\forall xy.\Phi(x,y), n$): A First Look

Unary Properties

Binary Properties

Constraints: Φ

$$FOMC(\forall xy.\Phi(x,y),n) = \sum_{\vec{k}} \binom{n}{\vec{k}} \prod_{1 \le i \le j \le u} \binom{k(i,j)}{\vec{h}^{ij}} \prod_{1 \le v \le b} n_{ijv}^{h_v^{ij}}$$
(6)

$$\mathbf{k}(i,j) = \begin{cases} \frac{\mathbf{k}_i(\mathbf{k}_{i-1})}{2} & \text{if } i = j\\ \mathbf{k}_i \mathbf{k}_j & \text{otherwise} \end{cases}$$
 (7)

1-types: "Unary Properties"

A 1-type $\alpha(x)$ is a conjunction of maximally consistent set of literals containing only the variable x

Example:

In an FO² language consisting of only one binary predicate R and a unary predicate A, the 1-types are given as follows:

$$\alpha_1(x) : \neg A(x) \wedge \neg R(x, x)$$

$$\alpha_3(x): A(x) \wedge \neg R(x,x)$$

$$\alpha_5(x) : \neg A(x) \wedge \neg R(x, x)$$

$$\alpha_7(x): A(x) \wedge \neg R(x,x)$$

$$\alpha_2(x) : \neg A(x) \wedge R(x, x)$$

$$\alpha_4(x): A(x) \wedge R(x,x)$$

$$\alpha_6(x) : \neg A(x) \wedge R(x,x)$$

$$\alpha_8(x): A(x) \wedge R(x,x)$$

1-types enumeration

Key Idea: A given constant realizes exactly one 1-type

1-Type Enumeration

Given a complete set of 1-types $\{\alpha_i\}_{i=1}^u$, then the number of ways of assigning 1-types to n domain constants such that we have k_i domain constants of type α_i is given as:

$$\binom{n}{\vec{k}} = \frac{n!}{k_1! \times \dots \times k_i! \times \dots \times k_u!}$$
 (8)

2-tables: Binary Properties

A **2-table** is a conjunction of maximally consistent literals with **exactly** two variables $\{x,y\}$

Example: 2-Tables

In an FO² language \mathcal{L} with only one binary predicate R ,the 2-tables are given as :

$$\beta_1(x, y) : \neg R(x, y) \land \neg R(y, x)$$

$$\beta_2(x,y) : \neg R(x,y) \wedge R(y,x)$$

$$\beta_3(x,y): R(x,y) \wedge \neg R(y,x)$$

$$\beta_4(x,y): R(x,y) \wedge R(y,x)$$

0000000000 2-table enumeration

FOMC in EO^2

Key Idea: A given pair of domain constants realize exactly one 2-table

Binary Property Enumeration

Given a complete set of 2-tables $\{\beta_v\}_{v=1}^b$, then the number of models ω such that:

$$k_i = |\{c : \omega \models \alpha_i(c)\}|$$
 $k_j = |\{c : \omega \models \alpha_j(c)\}|$

where $i \neq j$

Then the number of ways such that we have h_v^{ij} pair of constants (c, d)such that:

$$\alpha_i(c) \wedge \alpha_j(d) \wedge \beta_v(c,d)$$

is given as:

FOMC in FO^2

000000000

$$\sum_{\vec{k},\vec{h}} \binom{n}{k_1 \dots k_u} \prod_{1 \le i \le j \le u} \binom{k(i,j)}{h_1^{ij} \dots h_b^{ij}}$$

$$m{k}(i,j) = egin{cases} rac{k_i(k_i-1)}{2} & ext{if } i=j \ k_ik_j & ext{otherwise} \end{cases}$$

Adding Formulas : $\forall xy.\Phi(x,y)$

Given $\forall xy.\Phi(x, y)$ n_{ijv} is 1 if :

$$\alpha_i(x) \wedge \alpha_i(y) \wedge \beta_v(x, y) \models \Phi(x, x) \wedge \Phi(x, y) \wedge \Phi(y, x) \wedge \Phi(y, x)$$
 (10)

and 0 otherwise.

n_{ijv} are the indicator variables

An interpretation $\omega \models \forall xy.\Phi(x,y)$ if:

$$\forall (c \neq d) : (\omega \models \alpha_i(c) \land \alpha_i(d) \land \beta_v(c, d)) \leftrightarrow (n_{ijv} = 1)$$
 (11)

FOMC in **FO**²: $\forall x \forall y. \Phi(x, y)$

$$FOMC(\Phi, n) =$$

$$\sum_{\vec{k}.\vec{b}} \binom{n}{k_1, \dots, k_u} \prod_{1 \leq i \leq j \leq u} \binom{k(i, j)}{h_1^{ij}, \dots, h_b^{ij}} \prod_{1 \leq v \leq b} n_{ijv}^{h_v^{ij}}$$

Unary Properties

Constraints: Φ

Binary Properties

Cardinality Constraints

Cardinality Constraints

Cardinality constraints are arithematic constraints on the number of times a certain predicate is true in a given model

Example: Simple labelled Graphs with m Edges

$$\forall xy. \Phi(x,y) = \forall xy. (\neg R(x,x)) \land (R(x,y) \rightarrow R(y,x)) \land (|R| = 2m)$$

Counting with Cardinality Constraints

Key Idea: The \vec{k} and $\vec{h^{ij}}$ contain all the cardinality information

Example: Simple labelled Undirected Graphs with m Edges

$$\forall xy. \Phi(x, y) = \forall xy. (\neg R(x, x)) \land (R(x, y) \rightarrow R(y, x)) \land (|R| = 2m)$$

$$FOMC = \sum_{\vec{k}, \vec{h} \models \rho} \binom{n}{k_1, k_2} \prod_{1 \le i \le j \le 2} \binom{k(i, j)}{h_1^{ij}, \dots, h_4^{ij}} \prod_{1 \le v \le 4} n_{ijv}^{h_v^{ij}}$$

$$ho$$
 is $k_2 + \sum_{i \le j} (h_2^{ij} + h_3^{ij} + 2h_4^{ij}) = 2m$

Existential Quantifiers

Existential Quantifiers

Scott's Normal Form:

$$\forall xy.\Phi(x,y) \land \bigwedge_{i=1}^{m} \forall x \exists y.R_i(x,y)$$
 (12)

A Special Case:

$$\forall xy. \Phi(x, y) \land \forall x \exists y. R(x, y)$$
 (13)

Principle of Inclusion Exclusion

- Let Ω be a set of objects
- $S = \{S_1, \dots, S_m\}$ be a set of properties of Ω
- e_0 : The count of objects with **NONE** of the properties in S
- Let Q⊆ S, then NQ is the count of objects with AT LEAST the properties in Q

We define.

$$s_l = \sum_{|\mathcal{Q}|=l} N_Q \tag{14}$$

Then the following relation holds:

$$e_0 = \sum_{l=0}^{m} (-1)^l s_l \tag{15}$$

$$\forall xy.\Phi(x,y) \land \forall x\exists y.R(x,y)$$

$$\Omega = \{\omega : \omega \models \forall xy.\Phi(x,y)\}$$
(16)

$$S_c = \{\omega : \omega \models \forall xy. \Phi(x, y) \land \forall y. \neg R(c, y)\}$$
(17)

$$e_0 = \text{FOMC}(\forall xy.\Phi(x,y) \land \forall x \exists y.R(x,y))$$
(18)

$$s_l = \text{FOMC}(\forall xy. \Phi(x, y) \land P(x) \rightarrow \neg R(x, y) \land (|P| = l))$$
 (19)

From principle of inclusion-exclusion:

$$e_0 = \sum_{l=1}^{n} (-1)^l s_l \tag{20}$$

Counting Quantifiers (C²)

Counting Quantifiers

Counting Quantifiers : $\exists^{=k}, \exists^{\leq k}$ and $\exists^{\geq k}$

Example: Every Dog has at-most 4 legs

$$\forall x. Dog(x) \rightarrow \exists^{\leq 4} x. Legs(x)$$

$$\forall xy. \Phi(x,y) \land \bigwedge_{k=1}^{q} \forall x. (A_k(x) \leftrightarrow \exists^{=m_k} y. \Psi_k(x,y))$$
 (21)

Special case

$$\forall xy. \Phi(x, y) \land \forall x. (A(x) \leftrightarrow \exists^{-1} y. R(x, y))$$
 (22)

$$\forall xy. \Phi(x, y) \land \forall x. (A(x) \lor B(x) \to \exists^{-1} y. R(x, y))$$
$$\land \forall x. (A(x) \to \neg B(x))$$
 (23)

Counting Quantifiers: Step 1 (FOMC preserving reduction)

$$\forall xy. \Phi(x, y) \land \forall x. ((A(x) \lor B(x)) \to \exists^{-1} y. R(x, y))$$
$$\land \forall x. (A(x) \to \neg B(x))$$
 (19)

Has the same FOMC as the following formula:

$$\forall xy. \Phi(x, y) \land \forall x. ((A(x) \lor B(x)) \to \exists y. R(x, y))$$
 (24)

$$\wedge \forall x. (A(x) \to \neg B(x)) \tag{25}$$

$$\wedge \forall xy. M(x, y) \leftrightarrow ((A(x) \lor B(x)) \land R(x, y))$$
 (26)

$$\wedge |M| = |A| + |B| \tag{27}$$

Counting Quantifiers: Step 2 (Inclusion Exclusion)

KEY IDEA: Let $S_c = \{\omega : \omega \models \neg A(c) \land \exists^{-1} y. R(c, y)\}$ Clearly, we want the count of models ω such that $\omega \notin S_c$ for any c i.e.

$$e_0 = \text{FOMC}(\forall xy.\Phi(x,y) \land \forall x.(A(x) \leftrightarrow \exists^{=1}y.R(x,y)))$$

$$s_{l} = \text{FOMC}(\forall xy.\Phi(x, y) \land \forall x.((A(x) \lor B(x)) \rightarrow \exists^{=1} y.R(x, y)) \land \forall x.(A(x) \rightarrow \neg B(x)) \land (|B| = l))$$
(28)

$$e_0 = \sum_{l=1}^{n} (-1)^l s_l \tag{29}$$

Weighted Model Counting

Weighted Model Counting

$$\begin{split} \text{FOMC}(\forall xy. \Phi(x,y), n) &= \sum_{\vec{\pmb{k}}, \vec{\pmb{h}}} \binom{n}{\pmb{k}_1, \dots, \pmb{k}_u} \prod_{1 \leq i \leq j \leq u} \binom{\pmb{k}(i,j)}{h_1^{ij}, \dots, h_b^{ij}} \prod_{1 \leq v \leq b} n_{ijv}^{h_v^{ij}} \\ &= \sum_{\vec{\pmb{k}}, \vec{\pmb{h}}} F(\vec{\pmb{k}}, \vec{\pmb{h}}, \{n_{ijv}\}) \end{split}$$

For WFOMC, we introduce $w: (\vec{k}, \vec{h}) \to \mathbb{R}^+$

$$\mathrm{WFOMC}(\Phi, n) = \sum_{\vec{\pmb{k}}, \vec{\pmb{k}}} w(\vec{\pmb{k}}, \vec{\pmb{h}}) F(\vec{\pmb{k}}, \vec{\pmb{h}}, \{n_{ijv}\})$$

Expressivity of the weight functions $w(\vec{k}, \vec{h})$

WFOMC(
$$\Phi$$
, n) = $\sum_{\vec{k},\vec{h}} w(\vec{k},\vec{h}) F(\vec{k},\vec{h}, \{n_{ijv}\})$

The weight functions w(k, h) are a strictly more expressive class of weight functions than symmetric weight functions

Thank You