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Introduction
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Probabilistic Inference <+ Weighted Model Counting

= Weight Function w over a set of worlds €:
w: Q=R (1)

= Probability of a world w € €

L )

) Zw'eﬂ w(w’) (2)
= Probability of a logical formula ®:

P() - Zeer ) 3)



Introduction
oce

Weighted First Order Model Counting

WFOMC(®, n) = Z w(w) (4)

. , m is the domain cardinality

= w is independent of the domain elements

GOAL: Identifying Analytical formulas for PTIME WFOMC
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FOMC in FO2
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FO2: An Example

Example: Undirected Graphs
All simple undirected graphs can be interpreted as models of the
following FO? formula:

® = Vay.~R(z,2) A (R(z,y) = R(y, 2)) (5)
where the domain A is the set of nodes.

Problem: How many undirected graphs exist over n nodes?
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FOMC(Vzy.®(z, y), n)

: A First Look

Unary Properties

FOMC(Vay.®(z, y), n) =

Binary Properties Constraints: ¢

n
E
ki(ki—1)
2
{kz'kj

IT »a (6)

1<v<b

>

Eh

I

1<i<j<u

(")

ifi=j

otherwise
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1-types : "Unary Properties”

A 1-type «(z) is a conjunction of maximally consistent set of literals
containing only the variable z
Example:

In an FO? language consisting of only one binary predicate R and a
unary predicate A, the 1-types are given as follows:

aq(z) : 2 A(z) A = R(z, ) as(z) : 7 A(z) A R(z, x)
as(z) : A(z) A —R(z, x) ay(z) : A(z) A R(z, x)
as(z) : 2 A(z) A = R(z, ) ag(z) : 7A(z) A R(z, x)
ar(z) : A(z) A —R(z, x) ag(z) : A(z) A R(z, z)



FOMC in FO2
[e]e]ele] lelelelele)

1-types enumeration

Key Idea: A given constant realizes exactly one 1-type

1-Type Enumeration
Given a complete set of 1-types {a;}? ;, then the number of ways of
assigning 1-types to m domain constants such that we have k; domain

constants of type «; is given as:

n n!
(E) okl X X X xRy (8)
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2-tables: Binary Properties

A 2-table is a conjunction of maximally consistent literals with exactly
two variables {z, y}

Example: 2-Tables
In an FO? language £ with only one binary predicate R the 2-tables are

given as :
B1(z,y) : "R(z, y) A ~R(y, x)
ﬂ?(xa 7/) : _‘R('7:7 1,/) A R(Ua 1:)
53(‘L~ y) : R(‘La y) A _'R(ya “L)
Ba(z,y) : R(z, y) \ R(y, z)
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2-table enumeration

Key Idea: A given pair of domain constants realize exactly one
2-table
Binary Property Enumeration

Given a complete set of 2-tables {/3,}°_,, then the number of models w

such that :
k= {e:w = ai o) b= I{e:w b as(o)
where 7 # j
Then the number of ways such that we have hY pair of constants (¢, d)
such that:
a;i(c) A aj(d) A By(c, d)
is given as:

(kk]> _ (ki X ky)! (9)

hv RIUX X At X L x b
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Enumerating all models over 1-types and 2-tables

k(4. j)
)3 I ()

h 1<i<j<u

ki(k;—1)

if i=j

kik; otherwise
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Adding Formulas : Vzy.®(z, y)

Given Vzy.®(z, y)
Niju is 1if:

ai(2) A s (9)ABu(w, 1) = ®(a,2) A D(s, 4) A B(y,3) A B(y,2)  (10)

and 0 otherwise.
ngj, are the indicator variables

An interpretation w = Vay.®(z, y) if:

V(c# d) : (w = ai(c) A aj(d)ABy(c, d)) < (nge = 1) (11)

10
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FOMC in FO2: Vavy.d(z, y)

FOMC(®,n) =

k(i j
11 (hyzj (?ﬁh;,) IT n"

1<i<j<u N 17 b7 1<u<b

(]

k!
Bl

Constraints: ¢

Binary Properties
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Cardinality Constraints
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Cardinality Constraints

Cardinality constraints are arithematic constraints on the number of
times a certain predicate is true in a given model

Example: Simple labelled Graphs with m Edges
Vay.®(z, y) = Vay.(~R(z, 7)) A (R(z,y) = R(y, 2))A(R| = 2m)

11



Cardinality Constraints
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Counting with Cardinality Constraints

Key Idea: The k and h¥ contain all the cardinality information

Example: Simple labelled Undirected Graphs with m Edges
Vay.®(z, y) = Vay.(—R(z, 2)) A (B(z, y) = R(y, 2))A(|R] = 2m)

k(i, 5) i
FOMC= 3. (k:/@) 11 (hf”h4J> [T =,

Ehi=p 1<i<j<2 1<v<4

pis ko + ZKj(hg +hY +2p7) = 2m

12
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Existential Quantifiers
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Existential Quantifiers

Scott’s Normal Form:

Vay.®(z, y) /\ YVa3y. Ri(z, y) (12)
i=1
A Special Case:
Vay.®(z, y) A Vady. R(z, y) (13)

13



Existential Quantifiers
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Principle of Inclusion Exclusion

= Let ) be a set of objects

» S={5,...,5,} be a set of properties of

= ¢y : The count of objects with NONE of the properties in S

= Let ) C S, then Ng is the count of objects with AT LEAST the
properties in @

We define,

s= 3 No (14)

|Ql=1
Then the following relation holds:

m

e =Y (—1)'s (15)

=0

14



Existential Quantifiers
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FOMC Existential Quantifiers (Special case)

Vzy.@(z, y) A VaIy.R(z, y)

Q={w:wkEVey.®(z,9)}

Se ={w : w | Vay.®(z, y) AVy.—R(c,y)}

eg = FOMC(Vay.®(z, y) A Vady. R(z, y))

51 = FOMC(Vzy.®(z, y) A P(z) — = R(z,y) A (|P| = 1))

From principle of inclusion-exclusion:

n

0=y (-1)'s

=1

(20)

15



Counting Quantifiers (C?)




Counting Quantifiers (C2)
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Counting Quantifiers

Counting Quantifiers : 3=F 3=k and 3=2F

Example: Every Dog has at-most 4 legs

Va.Dog(x) — 35*x. Legs(z)

16
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Counting Quantifiers: A simple reduction

Vay.®(z, y) A /\ Va.(Ag(z) « Iy Uiz, y)) (21)
k=1
Special case
Vay.®(x, y) AVz.(A(z) < I y.R(z, y)) (22)

17



Counting Quantifiers: Step 1

Vay.®(z, y) AVa.(A(z) V B(z) = 37 y.R(z, y))

(23)
AVz.(A(x) — —B(x))

18
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Counting Quantifiers: Step 1 (FOMC preserving reduction)

Vay.®(z, y) AVz.((A(z) V B(z)) = 319 R(z, 9))

(19)
AVz.(A(z) — —~B(x))
Has the same FOMC as the following formula:
Vay.®(z, y) AVa.((A(z) V B(x)) — Jy.R(z, y)) (24)
AVz.(A(z) — —B(z)) (25)
AVay. M(z, 5) < (A(2) V B(@)) A R(z, y)) (26)
A M = |A] +|B| (27)

19
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Counting Quantifiers: Step 2 (Inclusion Exclusion)

KEY IDEA: Let S. = {w: w = —A(¢) AI7y.R(c, y)} Clearly, we want
the count of models w such that w ¢ S, for any c i.e.

eg = FOMC(Vzy.®(z, y) A Vz.(A(z) < 37 9. R(z, v)))

51 = FOMC(Vzy.®(, y) AVa.((A(z) V B(x)) — 3= y.R(=, y))

(28)
AVz.(A(z) = —~B(z)) A (|B| = 1))
€ = Z(*l)lsl (29)
=1

20
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Weighted Model Counting

e k(l,]) hi
OMC(Vay.2(z, y), 1) (klA> (h“ ...,h;g> I »

Eh 1<i<j<u > L2 1<v<b
= Z F(kv h, {nijv})
kR

21



Weighted Model Counting
[e]e] le}

Expressivity of the weight functions w(k, h)

WFOMC(®,n) = > w( , h)F( ", h, {ny})
k,h
The weight functions w(k, h) are a strictly
more expressive class of weight functions than
symmetric weight functions
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